Radial Glial Fibers Promote Neuronal Migration and Functional Recovery after Neonatal Brain Injury

Abstract

Radial glia (RG) are embryonic neural stem cells (NSCs) that produce neuroblasts and provide fibers that act as a scaffold for neuroblast migration during embryonic development. Although they normally disappear soon after birth, here we found that RG fibers can persist in injured neonatal mouse brains and act as a scaffold for postnatal ventricular-subventricular zone (V-SVZ)-derived neuroblasts that migrate to the lesion site. This injury-induced maintenance of RG fibers has a limited time window during post-natal development and promotes directional saltatory movement of neuroblasts via N-cadherin-mediated cell-cell contacts that promote RhoA activation. Transplanting an N-cadherin-containing scaffold into injured neonatal brains likewise promotes migration and maturation of V-SVZ-derived neuroblasts, leading to functional improvements in impaired gait behaviors. Together these results suggest that RG fibers enable postnatal V-SVZ-derived neuroblasts to migrate toward sites of injury, thereby enhancing neuronal regeneration and functional recovery from neonatal brain injuries

Similar works

Full text

thumbnail-image

Repositori Institucional de la Universitat Jaume I

redirect
Last time updated on 15/05/2018

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.