Anti-Proliferative Activity of HPOB against Multiple Myeloma Cells via p21 Transcriptional Activation

Abstract

Histone acetylation or deacetylation is closely associated with the progression of multiple myeloma (MM). Currently, many histone deacetylase (HDAC) inhibitors have been approved for being used in clinical trials, but theirtherapeutic effectsarestill not ideal. As a novel HDAC inhibitor, hydroxamicacid-based small-moleculeN-hydroxy-4-(2-[(2-hydroxyethyl)(phenyl)amino]-2-oxoethyl)benzamide (HPOB)’s possible roles in MM have not been studied. In this present study, the effect of HPOB as a potential anti-tumor agent in preventingproliferation and inducing apoptosis of MM cells had been investigated in detail. Our results showed that HPOB decreased the survival of MM cells in dose- and time-dependent manner. In addition, HPOB caused the accumulation of MM cells in G1 phase compared with the dimethylsulfoxide (DMSO) control group. Interestingly, we found that HPOB could overcome bortezomib (BTZ) resistance inMM cells and combining HPOB with BTZ could further sensitize MM cells. Certainly, our data illuminated that HPOB-mediated cell death occurs via transcriptional activation of p21, which was associated with an elevated level of global histone 3 acetylation (H3Ac) modification. Therefore, HPOB could be a potential candidate for MM treatment and the combination of HPOB and bortezomibcould bea possible therapeutic strategy for relapsed and refractory MM

Similar works

Full text

thumbnail-image

Directory of Open Access Journals

redirect
Last time updated on 04/05/2018

This paper was published in Directory of Open Access Journals.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.