Cellulose Nanostructures Obtained from Waste Paper Industry: A Comparison of Acid and Mechanical Isolation Methods

Abstract

<div><p>The paper industry primary waste is usually deposited in landfills or incinerated. This material has a high content of lignocellulosic components, which could be converted to cellulose nanostructures (CNS). This study aimed to compare compositional (Fourier transform infrared spectroscopy), thermal (thermogravimetric analysis), morphological (scanning electron microscopy) and dimensional (dynamic light scattering and atomic force microscopy) properties of CNS obtained through chemical and mechanical isolation processes. The FTIR results showed similar chemical bonding for both nanostructures, which indicated presence of cellulose and lignin. Their average size was 170 nm and 209 nm for chemical and mechanical processes, respectively. The morphology of SEM images showed a compact structure and the chemical isolation presents smaller CNS agglomeration than mechanical. TGA results showed higher thermal stability for CNS-chemical than CNS-mechanical samples and AFM images indicate the CNS morphologies, which showed nanoroads for CNS-chemical and nanoneedles for CNS-mechanical.</p></div

Similar works

Full text

thumbnail-image

FigShare

redirect
Last time updated on 21/04/2018

This paper was published in FigShare.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.