Abstract

Nachgenutzt gemäß den CC-Bestimmungen des Lizenzgebers bzw. einer im Dokument selbst enthaltenen CC-Lizenz.High temperatures are detrimental to crop yields and could lead to global warming-driven reductions in agricultural productivity. To assess future threats, the majority of studies used process-based crop models, but their ability to represent effects of high temperature has been questioned. Here we show that an ensemble of nine crop models reproduces the observed average temperature responses of US maize, soybean and wheat yields. Each day 430 C diminishes maize and soybean yields by up to 6% under rainfed conditions. Declines observed in irrigated areas, or simulated assuming full irrigation, are weak. This supports the hypothesis that water stress induced by high temperatures causes the decline. For wheat a negative response to high temperature is neither observed nor simulated under historical conditions, since critical temperatures are rarely exceeded during the growing season. In the future, yields are modelled to decline for all three crops at temperatures 430 C. Elevated CO2 can only weakly reduce these yield losses, in contrast to irrigation.Peer Reviewe

Similar works

Full text

thumbnail-image

Dokumenten-Publikationsserver der Humboldt-Universität zu Berlin

redirect
Last time updated on 10/04/2018

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.