The Small Punch Creep test has proven to be a suitable technique for assessing the\nproperties of in-service components. It is a reliable, efficient and cost-effective test for predicting\nthe behaviour of the material. The aim of this paper is to analyse the influence of different factors\non the Small Punch Creep (SPC) tests. The influence of the specimen clamping has been studied,\nexperimentally and by means of finite element models on different materials. In the analysed\nconditions, it has been proven that the influence of the upper die on the tests results is generally\nrelatively insignificant, even in the absence of upper die.\nFurthermore, the use of different materials at the punch has also been analysed. In order to achieve\nthis goal, SPC tests have been carried out on two light alloys (AZ31 and AlSi9Cu3) at 473 and\n523K. Three different balls have been employed: ceramic, tungsten-carbide and steel balls. It has\nbeen proven that for the creep ductile alloy (AZ31), there is no apparent effect on the specimen\nresponse. On the other hand, for the creep brittle alloy (AlSi9Cu3), a different trend of the material\nresponse is shown, dependent on the ball used. As a result, there seems to be a significant influence\nof the friction between the punch and the specimen on the tests results, related to the material\nbehaviour
Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.