Effect of Intercalated Water on Potassium Ion Transport through Kv1.2 Channels Studied via On-the-Fly Free-Energy Parametrization

Abstract

We introduce a two-dimensional version of the method called on-the-fly free energy parametrization (OTFP) to reconstruct free-energy surfaces using Molecular Dynamics simulations, which we name OTFP-2D. We first test the new method by reconstructing the well-known dihedral angles free energy surface of solvated alanine dipeptide. Then, we use it to investigate the process of K<sup>+</sup> ions translocation inside the Kv1.2 channel. By comparing a series of two-dimensional free energy surfaces for ion movement calculated with different conditions on the intercalated water molecules, we first recapitulate the widely accepted <i>knock-on</i> mechanism for ion translocation and then confirm that permeation occurs with water molecules alternated among the ions, in accordance with the latest experimental findings. From a methodological standpoint, our new OTFP-2D algorithm demonstrates the excellent sampling acceleration of temperature-accelerated molecular dynamics and the ability to efficiently compute 2D free-energy surfaces. It will therefore be useful in large variety complex biomacromolecular simulations

Similar works

Full text

thumbnail-image

FigShare

redirect
Last time updated on 08/04/2018

This paper was published in FigShare.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.