Decomposition of Ruthenium Olefin Metathesis Catalysts

Abstract

The decomposition of a series of ruthenium metathesis catalysts has been examined using methylidene species as model complexes. All of the phosphine-containing methylidene complexes decomposed to generate methylphosphonium salts, and their decomposition routes followed first-order kinetics. The formation of these salts in high conversion, coupled with the observed kinetic behavior for this reaction, suggests that the major decomposition pathway involves nucleophilic attack of a dissociated phosphine on the methylidene carbon. This mechanism also is consistent with decomposition observed in the presence of ethylene as a model olefin substrate. The decomposition of phosphine-free catalyst (H2IMes)(Cl)2RuCH(2-C6H4-O-i-Pr) (H2IMes = 1,3-dimesityl-4,5-dihydroimidazol-2-ylidene) with ethylene was found to generate unidentified ruthenium hydride species. The novel ruthenium complex (H2IMes)(pyridine)3(Cl)2Ru, which was generated during the synthetic attempts to prepare the highly unstable pyridine-based methylidene complex (H2IMes)(pyridine)2(Cl)2RuCH2, is also reported

Similar works

Full text

thumbnail-image

The Francis Crick Institute

redirect
Last time updated on 16/03/2018

This paper was published in The Francis Crick Institute.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.

Licence: CC BY-NC 4.0