Further Structure–Activity Relationships Study of Hybrid 7-{[2-(4-Phenylpiperazin-1-yl)ethyl]propylamino}-5,6,7,8-tetrahydronaphthalen-2-ol Analogues: Identification of a High-Affinity D3-Preferring Agonist with Potent in Vivo Activity with Long Duration of Action

Abstract

This paper describes an extended structure–activity relationships study of aminotetralin−piperazine-based hybrid molecules developed earlier for dopamine D2/D3 receptors. Various analogues as positional isomers have been developed where location of the phenolic hydroxyl group has been varied on the aromatic ring. Between two catechol derivatives, compound 6e with a two methylene linker length exhibited higher affinity and selectivity for D3 over D2 receptors over compound 6f with four methylene linkers (D2/D3 = 50.6 vs 7.51 for 6e and 6f, respectively). In general, the (−)-isomer was more potent than the (+)-isomeric counterpart. Binding results indicated highest selectivity for D3 receptors in compound (−)-10 (Ki = 0.35 nM; D2/D3 = 71). In the 5-hydroxy series, highest selectivity for D3 receptors was exhibited by compound (−)-25 (Ki = 0.82 nM; D2/D3 = 31.5). Most potent compounds exhibited binding and functional affinities at the sub-nanomolar level for the D3 receptor. Binding assays were carried out with HEK-293 cells expressing either D2 or D3 receptors by using tritiated spiperone as radioligand for competition studies to evaluate inhibition constants (Ki). A functional assay of selected compounds for stimulating GTPγS binding was carried out with CHO cells expressing human D2 receptors and AtT-20 cells expressing human D3 receptors. The functional assay results indicated partial to full agonist characteristics of test compounds. Compound (−)-25 was selected further for in vivo study to evaluate its potency in producing contralateral rotations in rats with unilateral lesion in the nigrostriatal region induced by neurotoxin 6-OHDA, a Parkinsonian animal model. Compound (−)-25 at 5 µmol/kg exhibited rotational activity that lasted beyond 12 h, whereas at a 1 µmol/kg dose the rotations lasted beyond 8 h

Similar works

Full text

thumbnail-image

The Francis Crick Institute

redirect
Last time updated on 16/03/2018

This paper was published in The Francis Crick Institute.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.

Licence: CC BY-NC 4.0