Diffusion- and Reaction-Limited Growth of Carbon Nanotube Forests

Abstract

We present a systematic study of the temperature and pressure dependence of the growth rate of vertically aligned small diameter (single- and few-walled) carbon nanotube forests grown by thermal chemical vapor deposition over the temperature range 560−800 °C and 10−5 to 14 mbar partial pressure range, using acetylene as the feedstock and Al2O3-supported Fe nanoparticles as the catalyst. We observe a pressure dependence of P0.6 and activation energies of <1 eV. We interpret this as a growth rate limited by carbon diffusion in the catalyst, preceded by a pre-equilibrium of acetylene dissociation on the catalyst surface. The carbon nanotube forest growth was recorded by high-resolution real-time optical imaging

Similar works

Full text

thumbnail-image

The Francis Crick Institute

redirect
Last time updated on 16/03/2018

This paper was published in The Francis Crick Institute.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.

Licence: CC BY-NC 4.0