Potential Energy Landscape of the Electronic States of the GFP Chromophore in Different Protonation Forms: Electronic Transition Energies and Conical Intersections

Abstract

We present the results of quantum chemical calculations of the transition energies and conical intersection points for the two lowest singlet electronic states of the green fluorescent protein chromophore, 4′-hydroxybenzylidene-2,3-dimethylimidazolinone, in the vicinity of its cis conformation in the gas phase. Four protonation states of the chromophore, i.e., anionic, neutral, cationic, and zwitterionic, were considered. Energy differences were computed by the perturbatively corrected complete active space self-consistent field (CASSCF)-based approaches at the corresponding potential energy minima optimized by density functional theory and CASSCF (for the ground and excited states, respectively). We also report the EOM-CCSD and SOS-CIS(D) results for the excitation energies. The minimum energy S0/S1 conical intersection points were located using analytic state-specific CASSCF gradients. The results reproduce essential features of previous ab initio calculations of the anionic form of the chromophore and provide an extension for the neutral, cationic, and zwitterionic forms, which are important in the protein environment. The S1 PES of the anion is fairly flat, and the barrier separating the planar bright conformation from the dark twisted one as well as the conical intersection point with the S0 surface is very small (less than 2 kcal/mol). On the cationic surface, the barrier is considerably higher (∼13 kcal/mol). The PES of the S1 state of the zwitterionic form does not have a planar minimum in the Franck−Condon region. The S1 surface of the neutral form possesses a bright planar minimum; the energy barrier of about 9 kcal/mol separates it from the dark twisted conformation as well as from the conical intersection point leading to the cis−trans chromophore isomerization

Similar works

Full text

thumbnail-image

The Francis Crick Institute

redirect
Last time updated on 16/03/2018

This paper was published in The Francis Crick Institute.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.

Licence: CC BY-NC 4.0