High-Resolution Differential Ion Mobility Separations Using Planar Analyzers at Elevated Dispersion Fields

Abstract

The ion mobility spectrometry (IMS) methods are grouped into conventional IMS, based on the absolute ion mobility, and differential or field asymmetric waveform IMS (FAIMS), based on mobility differences between strong and weak electric fields. A key attraction of FAIMS is substantial orthogonality to mass spectrometry (MS). Although several FAIMS/MS platforms were commercialized, their utility was limited by FAIMS resolving power, typically ∼10−20. Recently, gas mixtures comprising up to 75% He have enabled resolving power >100 that permits separation of numerous heretofore “coeluting” isomers. This performance opens major new proteomic and other biological applications. Here, we show that raising the separation field by ∼35% over the previous 21 kV/cm provides similar or better resolution (with resolving powers of >200 for multiply charged peptides) using only 50% He, which avoids problems due to elevated pressure and He content in the mass spectrometer. The heating of ions by the separation field in this regime exceeds that at higher He content but weaker field, inducing greater izomerization of labile species

Similar works

Full text

thumbnail-image

The Francis Crick Institute

redirect
Last time updated on 16/03/2018

This paper was published in The Francis Crick Institute.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.

Licence: CC BY-NC 4.0