Two- and Three-Dimensional Silver(I)-Organic Networks Generated from Mono- and Dicarboxylphenylethynes

Abstract

Three phenylethynes bearing methyl carboxylate (HL1), monocarboxylate (H2L2), and dicarboxylate (H2L3) groups were utilized as ligands to synthesize a new class of organometallic silver(I)-ethynide complexes as bifunctional building units to assemble silver(I)-organic networks. X-ray crystallographic studies revealed that in [Ag2(L1)2·AgNO3]∞ (1) (L1= 4-C2C6H4CO2CH3), one ethynide group interacts with three silver ions to form a complex unit. These units aggregate by sharing silver ions with the other three units to afford a silver column, which are further linked through argentophilic interaction to generate a two-demensional (2D) silver(I) network. In [Ag2(L2)·3AgNO3·H2O]∞ (2) (L2 = 4-CO2C6H4C2), the ethynide group coordinates to four silver ions to form a building unit (Ag4C2C6H4CO2), which interacts through silver(I)-carboxylate coordination bonds to generate a wave-like 2D network and is subsequently connected by nitrate anions as bridging ligands to afford a three-demensional (3D) network. In [Ag3(L3)·AgNO3]∞ (3) (L3 = 3,5-(CO2)2C6H3C2), the building unit (Ag4C2C6H3(CO2)2) aggregates to form a dimer [Ag8(L3)2] through argentophilic interaction. The dimeric units interact through silver(I)-carboxylate coordination bonds to directly generate a 3D network. The obtained results showed that as a building unit, silver(I)-ethynide complexes bearing carboxylate groups exhibit diverse binding modes, and an increase in the number of carboxylate groups in the silver(I)-ethynide complex unit leads to higher level architectures. In the solid state, all of the complexes (1, 2, and 3) are photoluminescent at room temperature

Similar works

Full text

thumbnail-image

The Francis Crick Institute

redirect
Last time updated on 16/03/2018

This paper was published in The Francis Crick Institute.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.

Licence: CC BY-NC 4.0