Selective discrimination of small hydrophobic biomolecules based on ion-current rectification in conically shaped nanochannel

Abstract

In this study, based on ion-current rectification in the conically shaped nanochannel embedded in polyethylene terephthalate (PET) membrane, we have selectively discriminated three small biomolecules. Because three positive biomolecules (Hoechst 33342, Propidium and Bupivacaine) have different hydrophobicities, their interactions with inside wall of the conical nanochannel are different and their binding affinities can be derived from Langmuir absorption model. Therefore, we can successfully discriminate these small biomolecules. The highest binding constant was obtained for the small molecule with highest hydrophobicity. Another interesting result is that the detection limit for the small molecule with the highest binding constant shifts to submicromole. (C) 2011 Elsevier B.V. All rights reserved

Similar works

Full text

thumbnail-image

Changchun Institute of Applied Chemistry, Chinese Academy Of Sciences

redirect
Last time updated on 13/03/2018

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.