Isogenic lines of pea (Pisum sativum L.) were used to determine the physiological site of action of the Rms-2 gene, which maintains apical dominance, and its effect on endogenous free indole-3-acetic acid (IAA) levels. In mutant rms-2 scions, which normally produce lateral branches below node 3 and above node 7, apical dominance was almost fully restored by grafting to Rms-2 (wildtype) stocks. In the reciprocal grafts, rms-2 stacks did not promote branching in wild-type shoots. Together, these results suggest that the Rms-2 gene inhibits branching in the shoot of pea by controlling the synthesis of a translocatable (hormone-like) substance that is produced in the roots and/or cotyledons and in the shoot. At all stages, including the stage at which aerial lateral buds commence outgrowth, the level of IAA in rms-a shoots was elevated (up to 5-fold) in comparison with that in wild-type shoots. The internode length of rms-2 plants was 40% less than in wild-type plants, and the mutant plants allocated significantly more dry weight to the shoot than to the root in comparison with wild-type plants. Crafting to wild-type stocks did not normalize IAA levels or internode length in rms-2 scions, even though it inhibited branching, suggesting that the involvement of Rms-2 in the control of IAA level and internode length may be confined to processes in the shoot
Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.