Abstract

<div><p>Recent studies support a role for FGF23 and its co-receptor Klotho in cardiovascular pathology, yet the underlying mechanisms remain largely elusive. Herein, we analyzed the expression of Klotho in mouse arteries and generated a novel mouse model harboring a vascular smooth muscle cell specific deletion of Klotho (<i>Sm22-KL<sup>−/−</sup></i>). Arterial Klotho expression was detected at very low levels with quantitative real-time PCR; Klotho protein levels were undetectable by immunohistochemistry and Western blot. There was no difference in arterial Klotho between <i>Sm22-KL<sup>−/−</sup></i> and wild-type mice, as well as no changes in serum markers of mineral metabolism. Intravenous delivery of FGF23 elicited a rise in renal (0.005; p<0.01) but not arterial Egr-1 expression, a marker of Klotho-dependent FGF23 signaling. Further, the impact of FGF23 on vascular calcification and endothelial response was evaluated in bovine vascular smooth muscle cells (bVSMC) and in a murine <i>ex vivo</i> model of endothelial function, respectively. FGF23 treatment (0.125–2 ng/mL) did not modify calcification in bVSMCs or dilatory, contractile and structural properties in mice arterial specimen <i>ex vivo</i>. Collectively, these results demonstrate that FGF23-Klotho signaling is absent in mouse arteries and that the vascular response was unaffected by FGF23 treatment. Thus, our data do not support Klotho-mediated FGF23 effects in the vasculature although confirmative studies in humans are warranted.</p> </div

Similar works

Full text

thumbnail-image

The Francis Crick Institute

redirect
Last time updated on 12/02/2018

This paper was published in The Francis Crick Institute.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.