Highly Ordered Protein Nanorings Designed by Accurate Control of Glutathione S‑Transferase Self-Assembly

Abstract

Protein self-assembly into exquisite, complex, yet highly ordered architectures represents the supreme wisdom of nature. However, precise manipulation of protein self-assembly behavior in vitro is a great challenge. Here we report that by taking advantage of the cooperation of metal-ion-chelating interactions and nonspecific protein–protein interactions, we achieved accurate control of the orientation of proteins and their self-assembly into protein nanorings. As a building block, we utilized the <i>C</i><sub>2</sub>-symmetric protein sjGST-2His, a variant of glutathione S-transferase from Schistosoma japonicum having two properly oriented His metal-chelating sites on the surface. Through synergic metal-coordination and non-covalent interactions, sjGST-2His self-assembled in a fixed bending manner to form highly ordered protein nanorings. The diameters of the nanorings can be regulated by tuning the strength of the non-covalent interaction network between sjGST-2His interfaces through variation of the ionic strength of the solution. This work provides a de novo design strategy that can be applied in the construction of novel protein superstructures

Similar works

Full text

thumbnail-image

FigShare

redirect
Last time updated on 12/02/2018

This paper was published in FigShare.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.