Tongxinluo Protects against Pressure Overload–Induced Heart Failure in Mice Involving VEGF/Akt/eNOS Pathway Activation

Abstract

<div><p>Background</p><p>It has been demonstrated that Tongxinluo (TXL), a traditional Chinese medicine compound, improves ischemic heart disease in animal models via vascular endothelial growth factor (VEGF) and endothelial nitric oxide synthase (eNOS). The present study aimed to investigate whether TXL protects against pressure overload–induced heart failure in mice and explore the possible mechanism of action.</p><p>Methods and Results</p><p>Transverse aortic constriction (TAC) surgery was performed in mice to induce heart failure. Cardiac function was evaluated by echocardiography. Myocardial pathology was detected using hematoxylin and eosin or Masson trichrome staining. We investigated cardiomyocyte ultrastructure using transmission electron microscopy. Angiogenesis and oxidative stress levels were determined using CD31 and 8-hydroxydeoxyguanosine immunostaining and malondialdehyde assay, respectively. Fetal gene expression was measured using real-time PCR. Protein expression of VEGF, phosphorylated (p)-VEGF receptor 2 (VEGFR2), p–phosphatidylinositol 3-kinase (PI3K), p-Akt, p-eNOS, heme oxygenase-1 (HO-1), and NADPH oxidase 4 (Nox4) were measured with western blotting. Twelve-week low- and high-dose TXL treatment following TAC improved cardiac systolic and diastolic function and ameliorated left ventricular hypertrophy, fibrosis, and myocardial ultrastructure derangement. Importantly, TXL increased myocardial capillary density significantly and attenuated oxidative stress injury in failing hearts. Moreover, TXL upregulated cardiac nitrite content and the protein expression of VEGF, p-VEGFR2, p-PI3K, p-Akt, p-eNOS, and HO-1, but decreased Nox4 expression in mouse heart following TAC.</p><p>Conclusion</p><p>Our findings indicate that TXL protects against pressure overload–induced heart failure in mice. Activation of the VEGF/Akt/eNOS signaling pathway might be involved in TXL improvement of the failing heart.</p></div

Similar works

Full text

thumbnail-image

FigShare

redirect
Last time updated on 12/02/2018

This paper was published in FigShare.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.