Formation of Highly Ordered Multimers in G‑Quadruplexes

Abstract

G-Rich DNA and RNA have a higher propensity to form G-quadruplex structures, but the presence of G-runs alone is not sufficient to prove that such sequences can form stable G-quadruplexes. While G-rich sequences are essential for G-quadruplex formation, not all G-rich sequences have the propensity to form G-quadruplex structures. In addition, monovalent metal ions, dehydrating agents, and loop sequences connecting the G-runs also play important roles in the topology of G-quadruplex folding. To date, no quantitative analysis of the CD spectra of G-quadruplexes in confrontation with the electrophoretic results has been performed. Therefore, in this study, we use information gained through the analysis of a series of well-known G-quadruplex-forming sequences to evaluate other less-studied sets of aptameric sequences. A simple and cost-effective methodology that can verify the formation of G-quadruplex motifs from oligomeric DNA sequences and a technique to determine the molecularity of these structures are also described. This methodology could be of great use in the prediction of G-quadruplex assembly, and the basic principles of our techniques can be extrapolated for any G-rich DNA sequences. This study also presents a model that can predict the multimerization of G-quadruplexes; the predictions offered by this model are shown to match the results obtained using circular dichroism

Similar works

Full text

thumbnail-image

The Francis Crick Institute

redirect
Last time updated on 12/02/2018

This paper was published in The Francis Crick Institute.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.

Licence: CC BY-NC 4.0