Estimation of perturbations in robotic behavior using dynamic mode decomposition

Abstract

<div><p>Physical human–robot interaction tasks require robots that can detect and react to external perturbations caused by the human partner. In this contribution, we present a machine learning approach for detecting, estimating, and compensating for such external perturbations using only input from standard sensors. This machine learning approach makes use of <i>Dynamic Mode Decomposition</i> (DMD), a data processing technique developed in the field of fluid dynamics, which is applied to robotics for the first time. DMD is able to isolate the dynamics of a nonlinear system and is therefore well suited for separating noise from regular oscillations in sensor readings during cyclic robot movements. In a training phase, a DMD model for behavior-specific parameter configurations is learned. During task execution, the robot must estimate the external forces exerted by a human interaction partner. We compare the DMD-based approach to other interpolation schemes. A variant, sparsity promoting DMD, is particularly well suited for high-noise sensors. Results of a user study show that our DMD-based machine learning approach can be used to design physical human–robot interaction techniques that not only result in robust robot behavior but also enjoy a high usability.</p></div

Similar works

Full text

thumbnail-image

The Francis Crick Institute

redirect
Last time updated on 12/02/2018

This paper was published in The Francis Crick Institute.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.