Abstract

<div><p>Here, we describe the metagenome and functional composition of a microbial community in a historically metal-contaminated tropical freshwater stream sediment. The sediment was collected from the Mina Stream located in the Iron Quadrangle (Brazil), one of the world’s largest mining regions. Environmental DNA was extracted and was sequenced using SOLiD technology, and a total of 7.9 Gbp was produced. A taxonomic profile that was obtained by comparison to the Greengenes database revealed a complex microbial community with a dominance of <i>Proteobacteria </i>and <i>Parvarcheota. </i> Contigs were recruited by bacterial and archaeal genomes, especially <i>Candidatus Nitrospira defluvii </i>and <i>Nitrosopumilus maritimus</i>, and their presence implicated them in the process of N cycling in the Mina Stream sediment (MSS). Functional reconstruction revealed a large, diverse set of genes for ammonium assimilation and ammonification. These processes have been implicated in the maintenance of the N cycle and the health of the sediment. SEED subsystems functional annotation unveiled a high degree of diversity of metal resistance genes, suggesting that the prokaryotic community is adapted to metal contamination. Furthermore, a high metabolic diversity was detected in the MSS, suggesting that the historical arsenic contamination is no longer affecting the prokaryotic community. These results expand the current knowledge of the microbial taxonomic and functional composition of tropical metal-contaminated freshwater sediments.</p></div

Similar works

Full text

thumbnail-image

The Francis Crick Institute

redirect
Last time updated on 12/02/2018

This paper was published in The Francis Crick Institute.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.