Deregulation of the MiR-193b-KRAS Axis Contributes to Impaired Cell Growth in Pancreatic Cancer

Abstract

<div><p>Modulation of KRAS activity by upstream signals has revealed a promising new approach for pancreatic cancer therapy; however, it is not clear whether microRNA-associated KRAS axis is involved in the carcinogenesis of pancreatic cancer. Here, we identified miR-193b as a tumor-suppressive miRNA in pancreatic ductal adenocarcinoma (PDAC). Expression analyses revealed that miR-193b was downregulated in (10/11) PDAC specimens and cell lines. Moreover, we found that miR-193b functioned as a cell-cycle brake in PDAC cells by inducing G1-phase arrest and reducing the fraction of cells in S phase, thereby leading to dampened cell proliferation. miR-193b also modulated the malignant transformation phenotype of PDAC cells by suppressing anchorage-independent growth. Mechanistically, KRAS was verified as a direct effector of miR-193b, through which the AKT and ERK pathways were modulated and cell growth of PDAC cells was suppressed. Taken together, our findings indicate that miR-193b-mediated deregulation of the KRAS axis is involved in pancreatic carcinogenesis, and suggest that miR-193b could be a potentially effective target for PDAC therapy.</p></div

Similar works

Full text

thumbnail-image

The Francis Crick Institute

redirect
Last time updated on 12/02/2018

This paper was published in The Francis Crick Institute.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.