Environmental risk assessment of manganese and its associated heavy metals in a stream impacted by manganese mining in South China

Abstract

<p>In South China, high manganese content in the drinking water source influenced by upstream manganese mine drainage has become a major concern. To investigate the extent of metal pollution and environmental risk in upstream sediments and native aquatic macrophytes, a study was conducted on a manganese mining-impacted river named the Heishui River. The results indicated that streambed sediments collected were polluted by Mn and other metals with the highest contents of Mn 43349.4 mg kg<sup>−1</sup>, Pb 128.6 mg kg<sup>−1</sup>, Zn 502.9 mg kg<sup>−1</sup>, and Cu 107.2 mg kg<sup>−1</sup>. The level of Mn in all sediments was higher than the consensus-based Probable Effect Concentration, indicating that adverse effects on sediment-dwelling organisms were likely to occur frequently. Among the studied metals, Mn had the highest bioavailability and ecological risk, followed by Zn. Native aquatic macrophytes accumulate large amounts of the studied metals. A significantly positive correlation was found between exchangeable fractions of the studied metals in sediments and in aquatic macrophytes. The risk assessment code showed the following risk levels of metals in sediments in descending order: Mn > Zn > Cu > Pb. In conclusion, the river impacted by manganese mining drainage poses a high risk to both the local ecosystem and downstream drinking water.</p

Similar works

Full text

thumbnail-image

FigShare

redirect
Last time updated on 12/02/2018

This paper was published in FigShare.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.