Validation of 3D neutronic-thermalhydraulic coupled codes RELAP5/PARCSv2.7 and TRACEv5.0P3/PARCSv3.0 against a PWR control rod drop transient

Abstract

<p>In nuclear safety field, neutronic and thermalhydraulic codes performance is an important issue. New capabilities implementation, as well as models and tools improvements are a significant part of the community effort in looking for better nuclear power plants (NPP) designs. A procedure to analyze the PWR response to local deviations on neutronic or thermalhydraulic parameters is being developed. This procedure includes the simulation of <i>Incore</i> and <i>Excore</i> neutron flux detectors signals. A control rod drop real plant transient is used to validate the used codes and their new capabilities. Cross-section data are obtained by means of the SIMTAB methodology. Detailed thermalhydraulic models were developed: RELAP5 and TRACE models simulate three different azimuthal zones. Besides, TRACE model is performed with a fully three-dimensional core, thus, the cross-flow can be obtained. A Cartesian vessel represents the fuel assemblies and a cylindrical vessel the bypass and downcomer. Simulated detectors signals are obtained and compared with the real data collected during a control rod drop trial at a PWR NPP and also with data obtained with SIMULATE-3K code.</p

Similar works

Full text

thumbnail-image

FigShare

redirect
Last time updated on 12/02/2018

This paper was published in FigShare.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.