Characteristics and genesis of diachronous Carboniferous volcano-sedimentary sequences: insights from geochemistry, petrology and U–Pb dating in the North Junggar basin, China

Abstract

<p>The subduction of oceanic lithosphere during the Carboniferous Period contributed to the formation of widely distributed subduction-related volcanic rocks within the Junggar basin. These volcanic rock associations contain significant clues for understanding the subduction of the Keramaili oceanic lithosphere and the filling of the remnant oceanic basin. Here, we report regional gravity and magnetic data, petrology, geochemistry, and U–Pb dating for Carboniferous volcanic rocks from the North Junggar basin (NJB). Using samples from well Y-1, we distinguish upper and lower volcanic sequences on the basis of selected geochemical data. An isochronous stratigraphic framework of Carboniferous volcano-sedimentary sequences is then constructed and the petrogenesis of these volcanic rocks is discussed. Finally, we propose an explanation for the genesis of these diachronous Carboniferous volcano-sedimentary sequences. The results show that various volcanic rocks are distributed in different areas of the NJB, and mainly consist of calc-alkaline basalt–andesite–dacite assemblages and alkaline basalt–basaltic andesite–andesite assemblages. The geochemical data also demonstrate a binary nature of the Carboniferous volcanic rocks. In the eastern NJB, the lower and upper volcanic sequences are formed during the early and late Carboniferous, respectively. However, all of these volcano-related sequences in the western of the NJB are formed during the late Carboniferous. These volcano-sedimentary sequences exhibit a ‘ladder-style’ of temporospatial evolution from east to west. The geochemical results also indicate that the upper volcanic rocks include island arc components formed in an extensional setting, whereas the lower volcanic rocks were derived from deep crustal cycling metasomatism by various mantle components in a continental arc environment. Earlier closure of the Keramaili oceanic basin and slab roll-back of the Junggar oceanic lithosphere in eastern <i>versus</i> western Junggar basin led to the formation of these diachronous volcano-sedimentary sequences.</p

Similar works

Full text

thumbnail-image

The Francis Crick Institute

redirect
Last time updated on 12/02/2018

This paper was published in The Francis Crick Institute.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.