Characterization of multi-scale microstructural features in Opalinus Clay

Abstract

STEM-, FIB- and X-ray tomography were applied to a sample taken from the Opalinus Clay unit. This allowed characterization of the pore structure in the fine-grained clay matrix at different levels of microstructural detail. On the level of detail that can be resolved by FIB-nt, the observed pore space is largely unconnected and the resolved porosity was in the 2-3 Vol.% range. At higher optical magnification but for smaller sample sizes, STEM tomography resolved a porosity of around 13 Vol.%. This suggests that the transition from an unconnected to a connected pore space in the shale sample occurs on the few nanometer scale. Geometric analyses of larger pores as visualized by FIB-nt revealed that dilation induced formation of bridges of only a few hundred nanometers between tips of neighboring pores may lead to a coalescence of larger pores. The resulting large pore network may allow for gas transport in the fine-grained clay matrix

Similar works

Full text

thumbnail-image

ZHAW digitalcollection

redirect
Last time updated on 11/02/2018

This paper was published in ZHAW digitalcollection.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.