The hybrid metal oxide-triazole materials [MoO3(trz)(0.5)] (1) and [W2O6(trz)] (2) (trz = 1,2,4-triazole) have been hydrothermally synthesized and characterized by different techniques (TGA, SEM, H-1 and C-13 MAS NMR, FT-IR spectroscopy, and structure determination by Rietveld analysis of high resolution synchrotron powder XRD data). Materials 1 and 2 display distinct behaviors when applied as catalysts for oxidation reactions with alcohol, aldehyde, olefin and sulfide substrates, and are more effective with hydrogen peroxide as the oxidant than with tert-butylhydroperoxide. The Mo-VI hybrid 1 transforms into soluble active species during cis-cyclooctene epoxidation with H2O2. When consumption of H2O2 reaches completion, spontaneous reassembly of the 2-dimensional molybdenum oxide network of 1 takes place and the hybrid precipitates as a microcrystalline solid that can be easily separated and recycled. Reaction induced self-separation behavior occurs with 1, H2O2 and other substrates such as methyl oleate and methylphenylsulfide. The W-VI hybrid 2 behaves differently, preserving its structural features throughout the heterogeneous catalytic process. (C) 2016 Elsevier Inc. All rights reserved
Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.