Skip to main content
Article thumbnail
Location of Repository

Multiphase flow measurement in the slug regime using ultrasonic measurement techniques and slug closure model

By Salem Al-lababidi


Multiphase flow in the oil and gas industry covers a wide range of flows. Thus, over the last decade, the investigation, development and use of multiphase flow metering system have been a major focus for the industry worldwide. However, these meters do not perform well in slug flow conditions. The present work involves experimental investigations of multiphase flow measurement under slug flow conditions. A two-phase gas/liquid facility was designed and constructed at Cranfield University. It consisted of a 0.05 m diameter 25 m long horizontal pipeline with the necessary instrumentation. An ultrasonic multiphase metering concept has been proposed and investigated. The concept was based on the combination of non-invasive and non-intrusive ultrasonic sensors and a slug closure model. The slug closure model was based on the "slug unit" model to infer the gas and liquid phase volumetric flowrates. The slug characteristics obtained by non-invasive and non-intrusive ultrasonic techniques were inputs to slug closure model which calculates the factors KI (Liquid), K2 (Liquid), K3 (Gas) and K4 (Gas). These factors are function of the slip ratio in the slug body, flow profile (CO), drift velocity (Vd), liquid holdup and gas void fraction in slug body, slug length, film length, and the total length of the slug unit. Based on ultrasonic sensor measurements, the slug translational velocity was estimated and the slug closure model then calculates the gas and liquid phase volumetric flowrates. Air water slug flow data were gathered and processed for a range of superficial velocities VSL=0.3 to 1.03 ms'1 and VsG=0.6 to 3.01 ms'1. The overall goal of a 5% relative error metering for both phases was not achieved for the conditions tested. The liquid phase percentage errors were from -63.6% to 45.4% while the gas phase percentage errors were from 42% to -14.6%. Key words: slug flow, slug characteristics, slug closure model, non-invasive ultrasonic, non-intrusive ultrasonic, clamp-on transit time ultrasonic flowmeter

Publisher: Cranfield University
Year: 2006
OAI identifier:
Provided by: Cranfield CERES

Suggested articles


  1. (1997). An intelligent cross correlation for pipelines flow velocity measurement. doi
  2. (1990). Design of capacitance electrodes for concentration measurement of two-phase flow. doi
  3. (2005). Investigation of Oil-Air TwoPhase Mass Flow rate Measurement using Venturi and Void Fraction Sensor. doi
  4. (2003). On fluctuation of the dynamic differential pressure signal of Venturi meter for wet gas metering. doi
  5. (1996). Relation of Slug Stability to Shedding Rate. doi

To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.