Article thumbnail
Location of Repository

ULTRASONIC-IMAGING AND ACOUSTIC-EMISSION MONITORING OF THERMALLY-INDUCED MICROCRACKS IN LAC-DU-BONNET-GRANITE

By 

Abstract

Concurrent ultrasonic tomography and acoustic emission monitoring were employed to study thermally induced microfracturing in an unconfined, 15-cm cube of Lac du Bonnet granite from Atomic Energy of Canada Limited's Underground Research Laboratory. An electrical resistance cartridge heater, placed in a central vertical borehole, was used to cycle the sample to progressively higher peak temperatures between 75-degrees-C and 175-degrees-C. Tomography data were collected, at room temperature, before and after each thermal cycle. Acoustic emission monitoring proceeded during both heating and cooling phases of each thermal cycle. Microfractures opened above 80-degrees-C and eventually coalesced into a macroscopic fracture plane. The macroscopic fracture originated at the outer edges of the sample and then extended inward, parallel to the fast velocity direction, and eventually intersected the borehole. Both acoustic emission locations and slowness difference tomography clearly delineated the fracture plane. We attribute the development of the macroscopic fracture to a thermal gradient cracking mechanism acting upon a brittle, anisotropic medium

Topics: QE
Publisher: AMER GEOPHYSICAL UNION
OAI identifier: oai:wrap.warwick.ac.uk:20929
Sorry, our data provider has not provided any external links therefore we are unable to provide a link to the full text.

Suggested articles


To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.