ULTRASONIC-IMAGING AND ACOUSTIC-EMISSION MONITORING OF THERMALLY-INDUCED MICROCRACKS IN LAC-DU-BONNET-GRANITE

Abstract

Concurrent ultrasonic tomography and acoustic emission monitoring were employed to study thermally induced microfracturing in an unconfined, 15-cm cube of Lac du Bonnet granite from Atomic Energy of Canada Limited's Underground Research Laboratory. An electrical resistance cartridge heater, placed in a central vertical borehole, was used to cycle the sample to progressively higher peak temperatures between 75-degrees-C and 175-degrees-C. Tomography data were collected, at room temperature, before and after each thermal cycle. Acoustic emission monitoring proceeded during both heating and cooling phases of each thermal cycle. Microfractures opened above 80-degrees-C and eventually coalesced into a macroscopic fracture plane. The macroscopic fracture originated at the outer edges of the sample and then extended inward, parallel to the fast velocity direction, and eventually intersected the borehole. Both acoustic emission locations and slowness difference tomography clearly delineated the fracture plane. We attribute the development of the macroscopic fracture to a thermal gradient cracking mechanism acting upon a brittle, anisotropic medium

Similar works

Full text

thumbnail-image

Warwick Research Archives Portal Repository

redirect
Last time updated on 03/04/2012

This paper was published in Warwick Research Archives Portal Repository.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.