Skip to main content
Article thumbnail
Location of Repository

Poly(vinyl alcohol) hydrogel as a biocompatible viscoelastic mimetic for articular cartilage.

By Stephen T. Britland, D. Eagland, Annie G. Smith, Peter C. Twigg, Colin A. Grant, A. Egan, A. Moody and N.J. Crowther


NoThe prevalence of suboptimal outcome for surgical interventions in the treatment of full-thickness articular cartilage damage suggests that there is scope for a materials-based strategy to deliver a more durable repair. Given that the superficial layer of articular cartilage creates and sustains the tribological function of synovial joints, it is logical that candidate materials should have surface viscoelastic properties that mimic native articular cartilage. The present paper describes force spectroscopy analysis by nano-indentation to measure the elastic modulus of the surface of a novel poly(vinyl alcohol) hydrogel with therapeutic potential as a joint implant. More than 1 order of magnitude decrease in the elastic modulus was detected after adsorption of a hyaluronic acid layer onto the hydrogel, bringing it very close to previously reported values for articular cartilage. Covalent derivatization of the hydrogel surface with fibronectin facilitated the adhesion and growth of cultured rat tibial condyle chondrocytes as evidenced morphologically and by the observance of metachromatic staining with toluidine blue dye. The present results indicate that hydrogel materials with potential therapeutic benefit for injured and diseased joints can be engineered with surfaces with biomechanical properties similar to those of native tissue and are accepted as such by their constituent cell type

Topics: Cartilage, Biocompatibility, Hydrogel, Polyvinylalcohol
Year: 2006
OAI identifier:
Provided by: Bradford Scholars
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • (external link)
  • http://www3.interscience.wiley... (external link)
  • Suggested articles

    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.