Particle Acceleration Asymmetry in a Reconnecting Nonneutral Current Sheet.

Abstract

NoThe acceleration of electrons and protons caused by a super-Dreicer electric field directed along the longitudinal component By of the magnetic field is investigated. The three-component magnetic field in a nonneutral current sheet occurring at the top of the reconnecting flaring loops on the charged particle trajectories and energies is considered. Particle trajectories in the reconnecting current sheet (RCS) and their energy spectra at the point of ejection from the RCS are simulated from the motion equation for different sheet thicknesses. A super-Dreicer electric field of the current sheet is found to accelerate particles to coherent energy spectra in a range of 10-100 keV for electrons and 100-400 keV for protons with energy slightly increasing with the sheet thickness. A longitudinal By component was found to define the gyration directions of particles with opposite charges toward the RCS midplane, i.e., the trajectory symmetry. For the ratio By/Bz 10-2 the trajectories completely lose their symmetry toward the RCS midplane, leading to the separation of particles with opposite charges into the opposite halves from an RCS midplane and the following ejection into different legs of the reconnecting loops. For the intermediate values of By/Bz the trajectories are partially symmetric toward the midplane, leading to electrons prevailing in one leg and protons in the other

Similar works

Full text

thumbnail-image

Bradford Scholars

redirect

This paper was published in Bradford Scholars.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.