Location of Repository

Mixtures of Stick-Breaking Processes

By Maria Kalli and Stephen G. Walker

Abstract

We consider mixtures of stickbreaking processes as a generalization of the mixture of Dirichlet process model. We provide a sampling algorithm which covers all such models provide specific reasons for using particular choices of prior. Numerical illustrations involving real data sets are presented

Topics: QA, QA351
Publisher: Centre for Health Services Studies
Year: 2008
OAI identifier: oai:kar.kent.ac.uk:24720

Suggested articles

Preview

Citations

  1. (1973). A Bayesian analysis of some nonparametric problems. doi
  2. (1994). A constructive de¯nition of Dirichlet priors.
  3. (1993). Bayesian computations via the Gibbs sampler and related Markov chain Monte Carlo methods. doi
  4. (1995). Bayesian density estimation and inference using mixtures. doi
  5. (2000). Dependent Dirichlet processes.
  6. (1998). Estimating mixtures of Dirichlet process models.
  7. (1994). Estimating normal means with a conjugate style Dirichlet process prior. doi
  8. (1994). Estimating normal means with a Dirichlet process prior. doi
  9. (1988). Estimating the means of several normal populations by nonparametric estimation of the distribution of the means.
  10. (1973). Ferguson distributions via P¶ olya{urn schemes. doi
  11. (1973). Ferguson distributions via Po´lya–urn schemes. doi
  12. (2001). Gibbs sampling methods for stick–breaking priors. doi
  13. (2001). Gibbs sampling methods for stick{breaking priors. doi
  14. (2000). Markov chain sampling methods for Dirichlet process mixture models. doi
  15. (1984). On a class of Bayesian nonparametric estimates I. Density estimates. doi
  16. (1996). Random discrete distributions derived from self{ similar random sets. doi
  17. (2008). Retrospective Markov chain Monte Carlo methods for Dirichlet process hierarchical models. doi
  18. (2007). Sampling the Dirichlet mixture model with slices. doi
  19. (2008). Slice Sampling the Mixture of Dirichlet Process Model: A Comparative Study and New Ideas. Technical Report.

To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.