Skip to main content
Article thumbnail
Location of Repository

Performance analysis and capacity assignment optimisation of wireless cells with re-use partitioning

By Demetres D. Kouvatsos, Irfan U. Awan, Khalid Al-Begain and Sotiris Tantos


This paper presents a novel and efficient analytic framework for the performance analysis and capacity-assignment optimisation of a wireless GSM cell employing the Re-Use Partitioning (RUP) policy. RUP splits hierarchically the available bandwidth into multiple layers of frequencies and allows tighter frequency re-use in order to achieve a higher network capacity. In this context, a queueing network model (QNM) of a wireless cell is proposed consisting of a hierarchical layer configuration which is decomposed into individual GE/GE/c/c loss systems each of which is analysed in isolation via a more general maximum entropy (ME) state probability solution, subject to appropriate GE-type flow formulae and mean value constraints. Moreover, a new performance optimisation index is proposed as the weighted average non-blocking probability of traffic over all frequency layers. For illustration purposes, the proposed index is utilised to formulate and solve two capacity-assignment optimisation problems. Numerical examples are included to validate the relative accuracy of the analytic GE-type performance metrics against simulation and assess the optimal re-use partitioning policy of the available bandwidth

Topics: Wireless Cells, Re-Use Partitioning, Performance Analysis
Year: 2002
OAI identifier:
Provided by: Bradford Scholars
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • (external link)
  • (external link)
  • Suggested articles

    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.