Biotinylated immunoliposomes were prepared by a non-covalent (biotin-streptavidin) coupling procedure and conjugated to the OX26 monoclonal antibody directed against the rat transferrin receptor. In vitro, these biotinylated immunoliposomes were used to by-pass P-glycoprotein in multidrug-resistant RBE4 brain capillary endothelial cells and thereby to achieve 2- to 3-fold higher intracellular accumulation of liposomal daunomycin as compared to free drug. The extent of cellular uptake of liposomal daunomycin was dose- and time-dependent, was inhibited by competition with unbound OX26 and was associated with a pharmacological (i.e. cytotoxic) effect. Cytotoxic effects of liposomal formulations of daunomycin, in contrast to the free drug, were apparent only after prolonged incubation periods being indicative of a slow intracellular unpacking and release of liposomal daunomycin. Pharmacokinetics and tissue distribution studies in the rat revealed brain accumulation of daunomycin in OX26-immunoliposomes to higher levels as compared to brain uptake of free daunomycin, or daunomycin incorporated within pegylated liposomes or within unspecific IgG(2a) isotype control immunoliposomes. Such OX26-mediated effects were not observed in other tissues such as spleen, liver, muscle or kidney
Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.