Impaired Intracellular Transport and Cell Surface Expression of Nonpolymorphic HLA-E

Abstract

The assembly of the classical, polymorphic major histocompatibility complex class I molecules in the endoplasmic reticulum requires the presence of peptide ligands and ~2-microglobulin (~2m). Formation of this trimolecular complex is a prerequisite for e~cient transport to the cell surface, where presented peptides are scanned by T lymphocytes. The function of the other class I molecules is in dispute. The human, nonclassical class I gene, HLA-E, was found to be ubiquitously transcribed, whereas cell surface expression was dif~cult to detect upon transfection. Pulse chase experiments revealed that the HLA-E heavy chain in transfectants, obtained with the murine myeloma cell line P3X63-Ag8.653 (X63), displays a significant reduction in oligosaccharide maturation and intracellular transport compared with HLA-B27 in corresponding transfectants. The accordingly low HLA-E cell surface expression could be significantly enhanced by either reducing the culture temperature or by supplementing the medium with human ~2m, suggesting inefficient binding of endogenous peptides to HLA-E. To analyze whether HLA-E binds peptides and to identify the corresponding ligands, fractions of acid-extracted material from HLA-E/X63 transfectants were separated by reverse phase HPLC and were tested for their ability to enhance HLA-E cell surface expression. Two fractions specifically increased the HLA class I expression on the HLA-E transfectant clone

Similar works

This paper was published in Open Access LMU.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.