Numerical study of heat source/sink effects on dissipative magnetic nanofluit flow from a non-linear inclined stretching and shirinking sheet

Abstract

This research numerically investigate radiative MHD mixed convection boundary layer flow of nanofluid over a nonlinear inclined stretching and shrinking sheet in the presence of heat source/sink and vicious dissipation. The governing coupled nonlinear momentum and thermal boundary layer equation are transform into a system of ordinary differential equations via similarity transformation with appropriate boundary condition. The dimensionless parameters that used in this study are magnetic field parameter, volume fraction parameter, power-law parameter, Richardson number, suction and injection parameter, Eckert number, heat source and heat sink parameter. A detailed study of the influence of these parameters on velocity and temperature distribution is conducted. The skin friction coefficient and rate of heat transfer values with selected parameters is presented

Similar works

This paper was published in UTHM Institutional Repository.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.