research article review

Coupled Quantum Dots Fabricated by Cleaved Edge Overgrowth: From Artificial Atoms to Molecules

Abstract

Atomically precise quantum dots of mesoscopic size have been fabricated in the gallium arsenide-aluminum gallium arsenide material system by cleaved edge overgrowth, with a high degree of control over shape, composition, and position. The formation of bonding and antibonding states between two such "artificial atoms" was studied as a function of quantum dot separation by microscopic photoluminescence (PL) spectroscopy. The coupling strength within these "artificial molecules" is characterized by a systematic dependence of the separation of the bonding and antibonding levels, and of the PL linewidth, on the "interatomic" distance. This model system opens new insights into the physics of coupled quantum objects

Similar works

Full text

thumbnail-image

University of Regensburg Publication Server

redirect
Last time updated on 11/07/2013

This paper was published in University of Regensburg Publication Server.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.