Continuous Multiclass Labeling Approaches and Algorithms

Abstract

We study convex relaxations of the image labeling problem on a con-tinuous domain with regularizers based on metric interaction potentials. The generic framework ensures existence of minimizers and covers a wide range of relaxations of the originally combinatorial problem. We focus on two specific relaxations that differ in flexibility and simplicity – one can be used to tightly relax any metric interaction potential, while the other one only covers Euclidean metrics but requires less computational effort. For solving the nonsmooth discretized problem, we propose a globally conver-gent Douglas-Rachford scheme, and show that a sequence of dual iterates can be recovered in order to provide a posteriori optimality bounds. In a quantitative comparison to two other first-order methods, the approach shows competitive performance on synthetical and real-world images. By combining the method with an improved binarization technique for non-standard potentials, we were able to routinely recover discrete solutions within 1%–5 % of the global optimum for the combinatorial image labeling problem. 1 Problem Formulation The multi-class image labeling problem consists in finding, for each pixel x in the image domain Ω ⊆ Rd, a label `(x) ∈ {1,..., l} which assigns one of l class labels to x so that the labeling function ` adheres to some local data fidelity as well as nonlocal spatial coherency constraints. This problem class occurs in many applications, such as segmentation, mul-tiview reconstruction, stitching, and inpainting [PCF06]. We consider the vari-ational formulation inf `:Ω→{1,...,l} f(`), f(`):= Ω s(x, `(x))dx ︸ ︷ ︷ ︸ data term + J(`). ︸ ︷ ︷ ︸ regularize

Similar works

Full text

thumbnail-image

CiteSeerX

redirect
Last time updated on 30/10/2017

This paper was published in CiteSeerX.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.