Collision Spectrum, Entropy Loss, T-Sponges, and Cryptanalysis of GLUON-64

Abstract

Abstract. In this paper, we investigate the properties of iterative non-injective functions and the security of primitives where they are used. First, we introduce the Collision Probability Spectrum (cps) parameter to quantify how far from a permutation a function is. In particular, we show that the output size decreases linearly with the number of iterations whereas the collision trees grow quadratically. Secondly, we investigate the t-sponge construction and show how certain cps and rate values lead to an improved preimage attack on long messages. As an example, we find collisions for the gluon-64 internal function, approximate its cps, and show an attack that violates the security claims. For instance, if a message ends with a sequence of 1 Mb (respectively 1 Gb) of zeros, then our preimage search takes time 2115.3 (respectively 2105.3) instead of 2128

Similar works

Full text

thumbnail-image

CiteSeerX

redirect
Last time updated on 29/10/2017

This paper was published in CiteSeerX.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.