FEASIBILITY OF THE SAR TECHNIQUE ON QUARTZ SAND OF TERRACES OF NW HIMALAYA: A CASE STUDY FROM DEVPRAYAG

Abstract

Abstract: Optically Stimulated Luminescence (OSL) dating technique based on the Single Aliquot Regenerative dose (SAR) protocol is being used increasingly as a means of establishing sediment bur-ial age in the late Quaternary studies. Thermal transfer, low and changing luminescence sensitivity of quartz grains of young sedimentary belts of the New Zealand Alps and the north-east Himalaya poses problems in using SAR protocol. Records of active tectonics and signatures of palaeo-climate are pre-served in the Quaternary – Holocene terrace sediments. Therefore, to unfold the history of successive tectonic and palaeo-climate events, robust chronological technique is needed. Palaeoflood deposits in NW Lesser Himalayan region receive quartz from the weathering of various rock types such as quartzite and phyllite in the Alaknanda Basin. A series of tests e.g. dose recovery, preheat plateau, thermal recuperation and change in sensitivity, were performed to check the suitability of quartz grains collected from the terrace sediment of Devprayag of the NW Himalaya, for OSL studies. Infer-ences were drawn regarding the source of the quartz grains on the basis of the geochemistry and lu-minescence intensity of the terrace sediment. The study shows that though quartz from the North West Himalaya are low in luminescence intensity but the reproducibility of De value makes the quartz sand suitable for SAR dating technique. Relation between luminescence intensity with CI

Similar works

Full text

thumbnail-image

CiteSeerX

redirect
Last time updated on 28/10/2017

This paper was published in CiteSeerX.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.