IST PubRep
Not a member yet
441 research outputs found
Sort by
Computational Design of Nanostructural Color for Additive Manufacturing
Additive manufacturing has recently seen drastic improvements in resolution, making it now possible to fabricate features at scales of hundreds or even dozens of nanometers, which previously required very expensive lithographic methods.
As a result, additive manufacturing now seems poised for optical applications, including those relevant to computer graphics, such as material design, as well as display and imaging applications.
In this work, we explore the use of additive manufacturing for generating structural colors, where the structures are designed using a fabrication-aware optimization process.
This requires a combination of full-wave simulation, a feasible parameterization of the design space, and a tailored optimization procedure.
Many of these components should be re-usable for the design of other optical structures at this scale.
We show initial results of material samples fabricated based on our designs.
While these suffer from the prototype character of state-of-the-art fabrication hardware, we believe they clearly demonstrate the potential of additive nanofabrication for structural colors and other graphics applications
Palladium gates for reproducible quantum dots in silicon
We replace the established aluminium gates for the formation of quantum dots in silicon with gates made from palladium. We study the morphology of both aluminium and palladium gates with transmission electron microscopy. The native aluminium oxide is found to be formed all around the aluminium gates, which could lead to the formation of unintentional dots. Therefore, we report on a novel fabrication route that replaces aluminium and its native oxide by palladium with atomic-layer-deposition-grown aluminium oxide. Using this approach, we show the formation of low-disorder gate-defined quantum dots, which are reproducibly fabricated. Furthermore, palladium enables us to further shrink the gate design, allowing us to perform electron transport measurements in the few-electron regime in devices comprising only two gate layers, a major technological advancement. It remains to be seen, whether the introduction of palladium gates can improve the excellent results on electron and nuclear spin qubits defined with an aluminium gate stack
Complex History and Differentiation Patterns of the t-Haplotype, a Mouse Meiotic Driver
The t-haplotype, a mouse meiotic driver found on chromosome 17, has been a model for autosomal segregation distortion for close to a century, but several questions remain regarding its biology and evolutionary history. A recently published set of population genomics resources for wild mice includes several individuals heterozygous for the t-haplotype, which we use to characterize this selfish element at the genomic and transcriptomic level. Our results show that large sections of the t-haplotype have been replaced by standard homologous sequences, possibly due to occasional events of recombination, and that this complicates the inference of its history. As expected for a long genomic segment of very low recombination, the t-haplotype carries an excess of fixed nonsynonymous mutations compared to the standard chromosome. This excess is stronger for regions that have not undergone recent recombination, suggesting that occasional gene flow between the t and the standard chromosome may provide a mechanism to regenerate coding sequences that have accumulated deleterious mutations. Finally, we find that t-complex genes with altered expression largely overlap with deleted or amplified regions, and that carrying a t-haplotype alters the testis expression of genes outside of the t-complex, providing new leads into the pathways involved in the biology of this segregation distorter
Computational Design of Nanostructural Color for Additive Manufacturing
Additive manufacturing has recently seen drastic improvements in resolution, making it now possible to fabricate features at scales of hundreds or even dozens of nanometers, which previously required very expensive lithographic methods.
As a result, additive manufacturing now seems poised for optical applications, including those relevant to computer graphics, such as material design, as well as display and imaging applications.
In this work, we explore the use of additive manufacturing for generating structural colors, where the structures are designed using a fabrication-aware optimization process.
This requires a combination of full-wave simulation, a feasible parameterization of the design space, and a tailored optimization procedure.
Many of these components should be re-usable for the design of other optical structures at this scale.
We show initial results of material samples fabricated based on our designs.
While these suffer from the prototype character of state-of-the-art fabrication hardware, we believe they clearly demonstrate the potential of additive nanofabrication for structural colors and other graphics applications
Synchronizing the Asynchronous
Synchronous programs are easy to specify because the side effects of an operation are finished by the time the invocation of the operation returns to the caller. Asynchronous programs, on the other hand, are difficult to specify because there are side effects due to pending computation scheduled as a result of the invocation of an operation. They are also difficult to verify because of the large number of possible interleavings of concurrent computation threads. We present synchronization, a new proof rule that simplifies the verification of asynchronous programs by introducing the fiction, for proof purposes, that asynchronous operations complete synchronously. Synchronization summarizes an asynchronous computation as immediate atomic effect. Modular verification is enabled via pending asynchronous calls in atomic summaries, and a complementary proof rule that eliminates pending asynchronous calls when components and their specifications are composed. We evaluate synchronization in the context of a multi-layer refinement verification methodology on a collection of benchmark programs
Inferring recent demography from spatial genetic structure
This thesis is concerned with the inference of current population structure based on geo-referenced genetic data. The underlying idea is that population structure affects its
spatial genetic structure. Therefore, genotype information can be utilized to estimate important demographic parameters such as migration rates. These indirect estimates of population structure have become very attractive, as genotype data is now widely available. However, there also has been much concern about these approaches. Importantly, genetic structure can be influenced by many complex patterns, which often cannot be disentangled. Moreover, many methods merely fit heuristic patterns of genetic structure, and do not build upon population genetics theory. Here, I describe two novel inference methods that address these shortcomings.
In Chapter 2, I introduce an inference scheme based on a new type of signal, identity by descent (IBD) blocks. Recently, it has become feasible to detect such long blocks of genome shared between pairs of samples. These blocks are direct traces of recent coalescence events. As such, they contain ample signal for inferring recent demography. I examine sharing of IBD blocks in two-dimensional populations with local migration. Using a diffusion approximation, I derive formulas for an isolation by distance pattern of long IBD blocks and show that sharing of long IBD blocks approaches rapid exponential decay for growing sample distance. I describe an inference scheme based on these results. It can robustly estimate the dispersal rate and population density, which is demonstrated on simulated data. I also show an application to estimate mean migration and the rate of recent population growth within Eastern Europe.
Chapter 3 is about a novel method to estimate barriers to gene flow in a two dimensional population. This inference scheme utilizes geographically localized allele frequency fluctuations - a classical isolation by distance signal. The strength of these local fluctuations increases on average next to a barrier, and there is less correlation
across it. I again use a framework of diffusion of ancestral lineages to model this effect, and provide an efficient numerical implementation to fit the results to georeferenced biallelic SNP data. This inference scheme is able to robustly estimate strong barriers to gene flow, as tests on simulated data confirm
Hemimetabolous genomes reveal molecular basis of termite eusociality
Around 150 million years ago, eusocial termites evolved from within the cockroaches, 50 million years before eusocial Hymenoptera, such as bees and ants, appeared. Here, we report the 2-Gb genome of the German cockroach, Blattella germanica, and the 1.3-Gb genome of the drywood termite Cryptotermes secundus. We show evolutionary signatures of termite eusociality by comparing the genomes and transcriptomes of three termites and the cockroach against the background of 16 other eusocial and non-eusocial insects. Dramatic adaptive changes in genes underlying the production and perception of pheromones confirm the importance of chemical communication in the termites. These are accompanied by major changes in gene regulation and the molecular evolution of caste determination. Many of these results parallel molecular mechanisms of eusocial evolution in Hymenoptera. However, the specific solutions are remarkably different, thus revealing a striking case of convergence in one of the major evolutionary transitions in biological complexity
Autoregulation of mazEF expression underlies growth heterogeneity in bacterial populations
The MazF toxin sequence-specifically cleaves single-stranded RNA upon various stressful conditions, and it is activated as a part of the mazEF toxin-antitoxin module in Escherichia coli. Although autoregulation of mazEF expression through the MazE antitoxin-dependent transcriptional repression has been biochemically characterized, less is known about post-transcriptional autoregulation, as well as how both of these autoregulatory features affect growth of single cells during conditions that promote MazF production. Here, we demonstrate post-transcriptional autoregulation of mazF expression dynamics by MazF cleaving its own transcript. Single-cell analyses of bacterial populations during ectopic MazF production indicated that two-level autoregulation of mazEF expression influences cell-to-cell growth rate heterogeneity. The increase in growth rate heterogeneity is governed by the MazE antitoxin, and tuned by the MazF-dependent mazF mRNA cleavage. Also, both autoregulatory features grant rapid exit from the stress caused by mazF overexpression. Time-lapse microscopy revealed that MazF-mediated cleavage of mazF mRNA leads to increased temporal variability in length of individual cells during ectopic mazF overexpression, as explained by a stochastic model indicating that mazEF mRNA cleavage underlies temporal fluctuations in MazF levels during stress
Point Interactions in Systems of Fermions
In this thesis we will discuss systems of point interacting fermions, their stability and other
spectral properties. Whereas for bosons a point interacting system is always unstable this ques-
tion is more subtle for a gas of two species of fermions. In particular the answer depends on
the mass ratio between these two species.
Most of this work will be focused on the N + M model which consists of two species
of fermions with N, M particles respectively which interact via point interactions. We will
introduce this model using a formal limit and discuss the N + 1 system in more detail. In
particular, we will show that for mass ratios above a critical one, which does not depend on the
particle number, the N + 1 system is stable. In the context of this model we will prove rigorous
versions of Tan relations which relate various quantities of the point-interacting model.\ud
By restricting the N + 1 system to a box we define a finite density model with point in-
teractions. In the context of this system we will discuss the energy change when introducing
a point-interacting impurity into a system of non-interacting fermions. We will see that this
change in energy is bounded independently of the particle number and in particular the bound
only depends on the density and the scattering length.
As another special case of the N + M model we will show stability of the 2 + 2 model for
mass ratios in an interval around one.
Further we will investigate a different model of point interactions which was discussed
before in the literature and which is, contrary to the N + M model, not given by a limiting
procedure but is based on a Dirichlet form. We will show that this system behaves trivially
in the thermodynamic limit, i.e. the free energy per particle is the same as the one of the
non-interacting system
Proof Systems for Sustainable Decentralized Cryptocurrencies
A proof system is a protocol between a prover and a verifier over a common input in which an honest prover convinces the verifier of the validity of true statements. Motivated by the success of decentralized cryptocurrencies, exemplified by Bitcoin, the focus of this thesis will be on proof systems which found applications in some sustainable alternatives to Bitcoin, such as the Spacemint and Chia cryptocurrencies. In particular, we focus on proofs of space and proofs of sequential work.
Proofs of space (PoSpace) were suggested as more ecological, economical, and egalitarian alternative to the energy-wasteful proof-of-work mining of Bitcoin. However, the state-of-the-art constructions of PoSpace are based on sophisticated graph pebbling lower bounds, and are therefore complex. Moreover, when these PoSpace are used in cryptocurrencies like Spacemint, miners can only start mining after ensuring that a commitment to their space is already added in a special transaction to the blockchain.
Proofs of sequential work (PoSW) are proof systems in which a prover, upon receiving a statement x and a time parameter T, computes a proof which convinces the verifier that T time units had passed since x was received. Whereas Spacemint assumes synchrony to retain some interesting Bitcoin dynamics, Chia requires PoSW with unique proofs, i.e., PoSW in which it is hard to come up with more than one accepting proof for any true statement.
In this thesis we construct simple and practically-efficient PoSpace and PoSW. When using our PoSpace in cryptocurrencies, miners can start mining on the fly, like in Bitcoin, and unlike current constructions of PoSW, which either achieve efficient verification of sequential work, or faster-than-recomputing verification of correctness of proofs, but not both at the same time, ours achieve the best of these two worlds