Institute of Urban Environment,Chinese Academy of Sciences
Not a member yet
590 research outputs found
Sort by
Reduction and removal of Cr(VI) from aqueous solutions using modified byproducts of beer production
Biosorption, as an effective and low-cost technology treating industrial wastewaters containing Cr(VI), has become a significant concern worldwide. In this work, acid-modified byproducts of beer production (BBP) were used to remove Cr(VI) from aqueous solutions. Removal of Cr(VI) increases as the pH is decreased from 4.0 to 1.5, but the maximum of total Cr removal is obtained in a pH range from 2.0 to 2.5. Nearly 60% of the initial Cr(VI) (100 mg L-1) was adsorbed or reduced to Cr(III) within the first 10 min at pH 2.0. The Cr (VI) removal capability of acid- modified BBP materials were almost completely retained after regenerating with acid. FT-IR and XPS spectra revealed that carboxylate and carboxyl groups on the surface of modified BBP materials play a major role in Cr(VI) binding and reduction, whereas amide and other groups play a minor role in the Cr(VI) removal process
The mobility, bioavailability, and human bioaccessibility of trace metals in urban soils of Hong Kong
Trace metals in soils may pose risks to both ecosystem and human health, especially in an urban environment. However, only a fraction of the metal content in soil is mobile and/or available for biota uptake and human ingestion. Various environmental availabilities of trace metals (Cu, Pb and Zn) in topsoil from highly urbanized areas of Hong Kong to plants, organisms, and humans, as well as the leaching potential to groundwater were evaluated in the present study. Forty selected soil samples were extracted with 0.11 M acid acetic, 0.01 M calcium chloride, 0.005 M diethylenetriaminepentaacetic acid, and simplified physiologically based extraction tests (PBET) for the operationally defined mobilizable, effectively bioavailable, potentially bioavailable, and human bioaccessible metal fractions, respectively. The metals were generally in the order of Zn > Cu ~ Pb for both mobility (24%, 7.6%, 6.7%) and effective bioavailability (2.8%, 0.9%, 0.6%), Pb (18%) > Cu (13%) > Zn (7.4%) for potential bioavailability, and Pb (59%) ~ Cu (58%) > Zn (38%) for human bioaccessibility. Although the variations in the different available concentrations of metals could mostly be explained by total metal concentrations in soil, the regression model predictions were further improved by the incorporation of soil physicochemical properties (pH, OM, EC). The effectively bioavailable Zn and Pb were mostly related to soil pH. Anthropogenic Pb in urban soils tended to be environmentally available as indicated by Pb isotopic composition analysis. Combining various site-specific environmental availabilities might produce a more realistic estimation for the integrated ecological and human health risks of metal contamination in urban soils
Interactions between marine microorganisms and their phages
Viruses are the most abundant biological entities in marine ecosystems. Most of them are phages that infect bacteria and archaea. Phages play important roles in causing the mortality of prokaryotic cells, structuring microbial communities, mediating horizontal gene transfer between different microbes, influencing the microbial food web process, and promoting biogeochemical cycles (such as C and N etc.) in the ocean. Here we provided an overview of recent advances in research on the interactions between marine microorganisms and their phages, and suggest future research directions based on our understanding of the literature and our own work
On-Line SPE Coupled with LC–APCI–MS for the Determination of Trace Explosives in Water
In this study, a rapid, sensitive, and fully automated on-line solid phase extraction (SPE)–liquid chromatography (LC)–mass spectrometry (MS) method for the analysis of explosive residues in water, was systematically investigated. First, separation of explosive residues was achieved by reverse-phase chromatography using an XDB-C18 column in 30 min with an eluent containing 0.1% acetic acid, 5 mM ammonium acetate, and methanol. Secondly, atmospheric pressures chemical ionization (APCI) and electrospray ionization (ESI) interfaced with the MS detector were used to examine the explosive residues, indicating that APCI–MS was more suitable than ESI–MS for the detection of explosives. Thirdly, the conditions for on-line SPE, including solvent pH and sample injected volume, were optimized. The calibration curves obtained for all explosives studied were linear in the concentration range 0.5–50 μg L?1. The detection limits of this method ranged from 0.05 to 0.5 μg L?1 when 4000 μL of sample was on-line pre-concentrated on C18 enrichment column. The recoveries from lake waters spiked with explosive standard solution ranged from 90.5 to 108.0%. The proposed method is simple, fast, and could be applied successfully to the analysis of explosive residues in contaminated water without any further pretreatment
Estrogenic Compounds and Estrogenicity in Surface Water, Sediments, and Organisms from Yundang Lagoon in Xiamen, China
<p>Seven estrogenic compounds--estrone (E1), 17β-estradiol (E2), 17α-ethynylestradiol (EE2), diethylstilbestrol (DES), nonylphenol (NP), octylphenol (OP), and bisphenol A (BPA)--in sediments, surface water, pore water, and organisms were investigated and estrogenic activities were estimated by examining estradiol equivalent (EEQ) concentrations in Yundang Lagoon of Xiamen. The results showed that estrogenic compounds were present in all matrixes of interest: in surface water, ranging from 609.61 to 711.31 ng/l; in pore water, ranging from 562.12 to 1038.15 ng/l; in sediments, ranging from 1433.12 to 2060.41 ng/g; and in biota samples, ranging from 1373.76 to 3199.09 ng/g (lipid weight). NP was the predominant component in all collected samples and the highest concentration was 1964.80 ng/g in sediment. Total EEQ ranged from 4.56 to 13.79 ng/l in surface water, from 2.40 to 17.16 ng/l in pore water, and from 8.66 to 23.95 ng/g in sediments. However, major contributors to total EEQ concentrations were E2, E1, and DES. The EEQ concentrations in surface water samples were at a higher level in comparison to that reported in European countries. To biological sample, the highest level of total estrogenic compounds was found in the short-necked clam. Higher values of the biota-sediment accumulation factor (BSAF) were found in short-necked clam and black seabream, indicating that the living habits of organism and physical-chemical properties of estrogenic compounds might influence the bioavailability of estrogenic compounds in organisms.</p
Recovering phosphorus as struvite from the digested swine wastewater with bittern as a magnesium source
Recovering nitrogen and phosphorus through struvite (MgNH4PO4?6H2O) crystallization from swine wastewater has gained increasing interest. However, swine wastewater contains complex compositions, which may hinder the formation of struvite crystal and affect the purity of the precipitates by forming other insoluble minerals. In this work, experiments were carried out to evaluate struvite precipitation in the anaerobically digested swine wastewater, with dosing bittern as a low-cost magnesium source. Exceeded 90% phosphate removal and 23-29% ammonium reduction were obtained. FTIR, XRD and mass balance analysis were combined to analyze the species of precipitated minerals. Results showed that the precipitates were struvite, mixed with amorphous calcium phosphate (ACP) and brucite. The presence of Ca2+ diminished the percentage of struvite and gave rise to ACP formation. Controlling pH below 9.5 and bittern dosage above 1% (w/w) could inhibit ACP precipitation and harvest a highly pure struvite crystal product
microbial communities in a subtropical riverine ecosystem (Jiulong River, southeast China)
Prokaryotic and eukaryotic microbes are key organisms in aquatic ecosystems and play pivotal roles in the biogeochemical cycles, but little is known about genetic diversity of these communities in subtropical rivers. In this study, microbial planktonic communities were determined by using denaturing gradient gel electrophoresis (DGGE) analysis from the Jiulong River, southeast China, and their relationships with local environmental factors were studied. The Betaproteobacteria (26%) and Dinophyceae(26%) were the most dominant taxa in prokaryotic and eukaryotic clones derived from DGGE bands, respectively. Further, both cluster and ordination analyses of prokaryotic and eukaryotic DGGE fingerprinting resulted in three identical groups from the 15 sites, which were closely related with the environmental factors. Partial redundancy analysis(partial RDA) revealed that agricultural pollution (phosphorus and nitrogen) and saltwater intrusion(conductivity and salinity) were the main factors impacting microbial community composition, by explaining more than two-thirds of the total variation in both prokaryotic (67.0%) and eukaryotic (70.5%) communities. Moreover, the robust and quantifiable relationship between DGGE results and environmental variables indicated that the community-level molecular fingerprinting techniques could support the physicochemical assessment of riverine water quality and ecosystem health
Assessment of Non-ecological Landscape Functions in Environmental Impact Assessment for Plan
<dd>以景观概念作为融合自然与社会、科学与美学、理性与感性的结合点,研究了景观非生态功能的内涵及其评价技术理论框架,从景观功能中提炼出景观非生态功能概念,初步完成景观非生态功能评价指标体系的构建.评价技术体系设计突出环境影响评价中现状评价的客观性以及影响预测的科学性.以人感尺度下的评价对象--景观单元概念为创新点,该评价体系补充并完善了现有景观评价体系的技术链条,在保证评价精度的前提下,简化并规范了评价工作流程.该评价体系沿用现有环境影响评价所广泛采用的现状评价、影响源分析、影响预测评价及措施建议的技术思路,基本能满足现行技术规范的要求.以武汉市后官湖生态宜居新城规划环评为例,验证了该体系的可操作性,为我国规划环评在景观评价技术领域的发展提供理论和实践参考.</dd
Household waste management for a peri-urban area based on analysing greenhouse gas emissions for Jimei District, Xiamen, China
<span align="left">This study aims to find the generation characteristics of household waste (HW) in a peri-urban area and establish an optimal HW management system to improve inhabitants living environment and for energy saving and pollution abatement. Jimei District, Xiamen, was chosen as a case study and 10 representative communities were selected as study areas. Questionnaires and a field survey were applied to investigate the characteristics of peri-urban area HW generation. After combining the results for communities of different urbanisation levels, representative communities were classified into three groups. Greenhouse gas (GHG) emissions from the current HW management system and a proposed integrated management system were compared. The results show that the integrated HW management system would achieve greater energy savings and GHG mitigation. Emissions from HW management in the lowest urbanised communities remained highest. However, the relationship between emissions and community urbanisation level was not completely linear. Finally, three kinds of integrated management strategy for HW generated from different community groups are proposed and suggestions given to establish an optimal integrated HW management system for peri-urban areas</span