INESC TEC Repository
Not a member yet
2130 research outputs found
Sort by
Minimizing total earliness and tardiness in a nowait flow shop
This paper considers the problem of scheduling jobs in a no-wait flow shop with the objective of minimizing total earliness and tardiness. An exact branch-and-bound algorithm is developed for the problem. Several dispatching heuristics used previously for other environments and two new heuristics were tested under a variety of conditions. It was found that one of the new heuristics consistently performed well compared to the others. An insertion search improvement procedure with speed up methods based on the structure of the problem was proposed and was found to deliver much improved solutions in a reasonable amount of time
Simulation of Nonradiative Energy Transfer in Photosynthetic Systems Using a Quantum Computer
Photosynthesis is an important and complex physical process in nature, whose comprehensive understanding would have many relevant industrial applications, for instance, in the field of energy production. In this paper, we propose a quantum algorithm for the simulation of the excitonic transport of energy, occurring in the first stage of the process of photosynthesis. The algorithm takes in account the quantum and environmental effects (pure dephasing), influencing the quantum transport. We performed quantum simulations of such phenomena, for a proof of concept scenario, in an actual quantum computer, IBM Q, of 5 qubits. We validate the results with the Haken-Ströbl model and discuss the influence of environmental parameters on the efficiency of the energy transport.</jats:p
Data governance: Organizing data for trustworthy Artificial Intelligence
The rise of Big, Open and Linked Data (BOLD) enables Big Data Algorithmic Systems (BDAS) which are often based on machine learning, neural networks and other forms of Artificial Intelligence (AI). As such systems are increasingly requested to make decisions that are consequential to individuals, communities and society at large, their failures cannot be tolerated, and they are subject to stringent regulatory and ethical requirements. However, they all rely on data which is not only big, open and linked but varied, dynamic and streamed at high speeds in real-time. Managing such data is challenging. To overcome such challenges and utilize opportunities for BDAS, organizations are increasingly developing advanced data governance capabilities. This paper reviews challenges and approaches to data governance for such systems, and proposes a framework for data governance for trustworthy BDAS. The framework promotes the stewardship of data, processes and algorithms, the controlled opening of data and algorithms to enable external scrutiny, trusted information sharing within and between organizations, risk-based governance, system-level controls, and data control through shared ownership and self-sovereign identities. The framework is based on 13 design principles and is proposed incrementally, for a single organization and multiple networked organizations
Simultaneous Underwater Navigation and Mapping
The use of underwater autonomous vehicles has been growing, allowing the performance of tasks that cause inherent risks to Human, namely in inspection processes near to structures. With growth in usage of systems with autonomous navigation, visual acquisition methods have also gotten more developed because, they have appealing cost and they also show interesting results when operate at a short distance. It is possible to improve the quality of navigation through visual SLAM techniques which can map and locate simultaneously and its key aspect is the detection of revisited areas. These techniques are not usually applied to underwater scenarios and, therefore, its performance in environment is unknown. The paper presents a more reliable navigation system for underwater vehicles, resorting to some visual SLAM techniques from literature. The results, conducted in a realistic scenario, demonstrated the ability of the system to be applied to underwater environment.</jats:p
Rapid detection of spammers through collaborative information sharing across multiple service providers
Spammers and telemarketers target a very large number of recipients usually dispersed across many Service Providers (SPs). Collaboration and Information sharing between SPs would increase the detection accuracy but detection effectiveness depends on the amount of information shared between SPs. Having service provider's exchange call detail records would arguably attain the best detection accuracy but would require significant network resources. Moreover, SPs are likely to feel uncomfortable in sharing their call records because call records contain user's private information as well as operational details of their networks. The challenge towards the design of collaborative Spam over Internet Telephony (SPIT) detection system is two-fold: it should attain high detection accuracy with a small false positive, and should fully protect the privacy of users and their service providers. In this paper, we propose a COllaborative Spit Detection System (COSDS)-a collaborative SPIT detection system for the Voice over IP (VoIP) network where service providers collaborate for the effective and early detection of SPIT callers without raising privacy concerns. To this extent, COSDS relies on a trusted Centralized Repository (CR) and exchange of non-sensitive reputation scores. The CR computes global reputation of users by aggregating the reputation scores provided by the respective collaborating SPs. The data exchanged to the CR is not sensitive regarding users privacy, and cannot be used to infer the relationship network of users. We evaluate the performance of our system using synthetic data that we have generated by simulating the realistic social behavior of spammers and non-spammers in a network. The results show that the COSDS approach has better detection accuracy as compared to the traditional stand-alone detection systems. For instances, in a setup where spammers are making calls to recipients of many SPs, COSDS successfully identifies spammers with the True Positive (TP) rate of around 80% and false positive (FP) rate of around 2% on a first day, which further increases to 100% TP rate and zero FP rate in three days. COSDS approach is fast, requires a small communication overhead, ensures privacy of users and collaborating SP, and requires only few iterations for the reputation convergence within the SP. © 2018 Elsevier B.V
Heuristics for scheduling jobs in a permutation flow shop to minimize total earliness and tardiness with unforced idle time allowed
This paper considers the problem of scheduling jobs in a permutation flow shop with the objective of minimizing total earliness and tardiness. Unforced idle time is considered in order to reduce the earliness of jobs. It is shown how unforced idle time can be inserted on the final machine. Several dispatching heuristics that have been used for the problem without unforced idle time were modified and tested. Several procedures were also developed that conduct a second pass to develop a sequence using dispatching rules. These procedures were also tested and were found to result in better solutions
Learning Preferential Perceptual Exposure for HDR Displays
High dynamic range (HDR) displays are capable of displaying a wider dynamic range of values than conventional displays. As HDR content becomes more ubiquitous, the use of these displays is likely to accelerate. As HDR displays can present a wider range of values, traditional strategies for mapping HDR content to low dynamic range (LDR) displays can be replaced with either directly displaying values, or using a simple shift mapping (exposure adjustment). The latter approach is especially important when considering ambient lighting, as content viewed in a dark environment may appear substantially different to a bright one. This paper seeks to identify an exposure value which is suitable for displaying specific HDR content on an HDR display under a range of ambient lighting levels. Based on data captured with human participants, this paper establishes user preferred exposure values for a variety of maximum display brightnesses, content and ambient lighting levels. These are then used to develop two models to predict preferred exposure. The first is based on linear regression using straightforward image statistics which require minimal computation and memory to be computed, making this method suitable to be directly used in display hardware. The second is a model based on convolutional neural networks (CNN) to learn image features which best predict exposure values. The CNN model generates better results than the first model at the cost of memory and computation time. © 2013 IEEE
A cluster-based optimization approach to support the participation of an aggregator of a larger number of prosumers in the day-ahead energy market
A fit of CD4+ T cell immune response to an infection by lymphocytic choriomeningitis virus
We fit an immune response model to data reporting the CD4+ T cell numbers from the 28 days following the infection of mice with lymphocytic choriomeningitis virus LCMV.We used an ODE model that was previously used to describe qualitatively the behaviour of CD4+ T cells, regulatory T cells (Tregs) and interleukine-2 (IL-2) density. The model considered two clonotypes of T cells in order to fit simultaneously the two time series for the gp61 and NP309 epitopes. We observed the proliferation of T cells and, to a lower extent, Tregs during the immune activation phase following infection and subsequently, during the contraction phase, a smooth transition from faster to slower death rates. The six parameters that were optimized were: the beginning and ending times of the immune response, the growth rate of T cells, their capacity, and the two related with the homeostatic numbers of T cells that respond to each epitope. We showed that the ODE model was able to be calibrated thus providing a quantitative description of the data. © 2019 the Author(s)