IAES International Journal of Artificial Intelligence (IJ-AI)
Not a member yet
    1375 research outputs found

    Fuzzy risk assessment system for indoor air quality and respiratory disease prevention

    Get PDF
    This study addresses the evaluation of indoor air quality, with a focus on mitigating respiratory diseases and sick building syndrome (SBS). Recognizing that different pollutants exhibit variable behavior depending on environmental factors and human activity, the objective was to develop a fuzzy logic-based classification system that integrates environmental variables such as temperature, relative humidity, and pollutant concentrations‒particulate matter (PM10, PM2.5), carbon dioxide (CO₂), and total volatile organic compound (TVOC)‒into a unified model. The method involved defining risk levels as low, moderate, high, and very high, and implementing 54 fuzzy rules to dynamically and accurately categorize these risks, based on measurements taken between 2022 and 2024 in the states of Morelos and Puebla under various relative humidity and temperature scenarios. The analysis of the results demonstrated robust system performance, with an overall accuracy of 94.08%, but also revealed challenges in distinguishing between adjacent risk classes. This research contributes to a better understanding of the complex impacts of air quality on health and reinforces efforts to mitigate respiratory problems and SBS in densely populated indoor environments

    The effectiveness of ChatGPT in extracting architectural patterns and tactics

    Get PDF
    This work investigates the potential of ChatGPT, a cutting-edge large language model (LLM), for software design analysis specifically in detecting architectural patterns and tactics. The evaluation involves comparing ChatGPT’s performance with that of Archie, a traditional Eclipse plugin designed for architectural analysis. The study uses the source code of five open-source software systems as the testing ground. Results reveal that ChatGPT achieves noteworthy performance in both pattern and tactic detection tasks. Specifically, for pattern detection, ChatGPT demonstrates an accuracy of up to 47.06%, while for tactic detection, it achieves a precision of 28.25%. While ChatGPT’s current capabilities are not yet a replacement for specialized tools like Archie, it offers significant potential as a complementary tool in architectural analysis workflows. By bridging the gap between natural language understanding and software engineering, ChatGPT could pave the way for more intelligent and automated solutions in the field. However, a key limitation is its difficulties in handling foundational or traditional tactics, resulting in a lower detection rate in certain areas. This research contributes valuable insights into the application of LLMs in software engineering, highlighting both the strengths and the limitations of ChatGPT in addressing complex architectural tasks

    A deep learning-based framework for automatic detection of COVID-19 using chest X-ray and CT-scan images

    Get PDF
    COVID-19 has profoundly impacted global public health, underscoring the need for rapid detection methods. Radiography and radiologic imaging, especially chest X-rays, enable swift diagnosis of infected individuals. This study delves into leveraging machine learning to identify COVID-19 from X-ray images. By gathering a dataset of 9,000 chest X-rays and CT scans from public resources, meticulously vetted by board-licensed radiologists to confirm COVID-19 presence, the research sets a robust foundation. However, further validation is essential expanding datasets to encompass enough COVID-19 cases enhances convolutional neural network (CNN) accuracy. Among various machine learning techniques, deep learning excels in identifying distinct patterns on imaging characteristics discernible in chest radiographs of COVID-19 patients. Yet, extensive validation across diverse datasets and clinical trials is crucial to ensure the robustness and generalizability of these models. The conversation extends into complexities, including ethical considerations around patient privacy and integrating intelligent tech into clinical workflows. Collaborating closely with healthcare professionals ensures this technology complements the established diagnostic approach. Despite the potential to detect COVID-19 using chest X-ray imaging findings, thorough research and validation, alongside ethical deliberations, are vital before implementing it in the healthcare field. The results show that the proposed model achieved classification accuracy and F1 score of 96% and 98%, respectively, for the X-ray images

    Optimizing citrus disease detection: a transferrable convolutional neural network model enhanced with the fruitfly optimization algorithm

    Get PDF
    Fungal, bacterial, and viral diseases significantly threaten citrus production and quality worldwide, prompting producers to explore technological solutions to mitigate the financial impact of these diseases. Image analysis techniques have emerged as powerful tools for detecting citrus diseases by differentiating between healthy and diseased specimens through the extraction of discriminative features from input images. This paper introduces a valuable dataset comprising 953 color images of orange leaves from the species Citrus sinensis (L.) Osbeck, which serves to train, evaluate, and compare various algorithms aimed at identifying abnormalities in citrus fruits. The development of automated detection systems is crucial for reducing economic losses in citrus production, with this research focusing on twelve specific diseases and nutrient deficiencies. We propose a novel approach to citrus plant disease detection utilizing a hyper-parameter tuned transferrable convolutional neural network (TCNN) model, referred to as the enhanced fruitfly optimization algorithm (EFOA)-TCNN model. This model optimizes the parameters of TCNN using the EFOA and enhances architectural design by incorporating three convolutional layers alongside an energy layer instead of a traditional pooling layer. Experimental results demonstrate that the proposed EFOA-TCNN model outperforms existing state-of-the-art methods, achieving a sensitivity of 0.975 and an accuracy of 0.995

    Depression detection through transformers-based emotion recognition in multivariate time series facial data

    Get PDF
    Globally, the prevalence of mental health disorders, particularly depression, has become a pressing issue. Early detection and intervention are vital to mitigate the profound impact of depression on individuals and society. Leveraging transformer models, renowned for their excellence in natural language processing and time series tasks, we explore their application in depression detection using multivariate time series (MTS) data from facial expressions. Transformer models excel in sequential data processing but remain relatively unexplored in facial expression analysis. This study aims to compare transformer models applied to first-order time derivative data with traditional methods. We use the distress analysis interview corpus wizard of oz (DAIC-WOZ) dataset and evaluate models with mean absolute error (MAE) and root mean squared error (RMSE) metrics. Results show that transformer models on first derivatives outperform others with an MAE of 4.42 and RMSE of 5.42. While transformer models on raw data surpass XGBoost in RMSE, they fall short of LSTM+transformer with an MAE of 5.41 and RMSE of 6.02. Preprocessing through differentiation enhances transformer models' ability to capture temporal patterns, promising improved depression detection accuracy

    Graph-based methods for transaction databases: a comparative study

    Get PDF
    There has been an increased demand for structured data mining. Graphs are among the most extensively researched data structures in discrete mathematics and computer science. Thus, it should come as no surprise that graph-based data mining has gained popularity in recent years. Graph-based methods for a transaction database are necessary to transform all the information into a graph form to conveniently extract more valuable information to improve the decision-making process. Graph-based data mining can reveal and measure process insights in a detailed structural comparison strategy that is ready for further analysis without the loss of significant details. This paper analyzes the similarities and differences among four of the most popular graph-based methods that is applied to mine rules from transaction databases by abstracting them out as a concrete high-level interface and connecting them into a common space

    Exploring patient-patient interactions graphs by network analysis

    Get PDF
    Understanding how patient demographics and shared experiences impact interactions is essential for strengthening pa/tient support networks and optimizing health outcomes as personalized healthcare becomes more and more important. To this end, this study explores the patient-patient interactions (PPIs) graph as a network and applies selected network analysis approaches to examine the PPIs network of accutane drug. Two main research questions are addressed by gaining deeper insight at the hidden patterns of reactivity and connectivity among interchanging nodes. There was a negative response to the first research question, which asked if patients react to others that have similar gender and/or age profiles in a consistent way. Patients tended to interact with people of different genders and ages, indicating a high degree of heterogeneity in the network. Negative responses were likewise given to the second research question, which asked if communities inside the network could identify patients based on gender or age profile. Network analysis approaches for community detection failed to distinguish between groups with similar demographic characteristics. Rather, groups seemed to emerge based on other factors, like similarity in patient opinions. The results imply that gender and age do not have a major influence on community membership. Future research will concentrate on applying more sophisticated graph mining techniques to expand these approaches to cover more and larger PPIs networks

    Accuracy of neural networks in brain wave diagnosis of schizophrenia

    Get PDF
    This research explores the application of a modified deep learning model for electroencephalography (EEG) signal classification in the context of schizophrenia diagnosis. This study aims to utilize the temporal and spatial characteristics of EEG data to improve classification accuracy. Four popular convolutional neural network (CNN) architectures, namely LeNet-5, AlexNet, VGG16, and ResNet-18, are adapted to handle 1D EEG signals. In addition, a hybrid architecture of CNN-gated recurrent unit (GRU) and CNN-long short-term memory (LSTM) is proposed to capture spatial and temporal dynamics. The model was evaluated on a dataset consisting of EEG recordings from 14 patients with paranoid schizophrenia and 14 healthy controls. The results show high accuracy and F1 scores for all modified models, with CNN-LSTM and CNN-GRU achieving the highest performance with scores of 0.96 and 0.97, respectively. Receiver operating characteristic (ROC) curves demonstrate the model's ability to distinguish between healthy controls and schizophrenia patients. The proposed model offers a promising approach for automated schizophrenia diagnosis based on EEG signals, potentially assisting clinicians in early detection and intervention. Future work will focus on larger data sets and explore transfer learning techniques to improve the generalization ability of the model

    Balancing and metaheuristic techniques for improving machine learning models in brain stroke prediction

    Get PDF
    A brain stroke, medically referred to as a stroke, represents a critical condition triggered by the disruption of blood flow to a region of the brain. Early detection of stroke is crucial to prevent fatal complications. In this study, we worked with an unbalanced dataset of 4981 entries on stroke, which we balanced using the K-means synthetic minority over-sampling technique (KMeansSMOTE) algorithm. We then employed five machine learning algorithms: decision tree, random forest, support vector machine, K-nearest neighbors, and gradient boosting. We compared the hyperparameter optimization of these algorithms using four metaheuristic techniques: gray wolf optimization, particle swarm optimization, genetic algorithm, and artificial bee colony. The models' effectiveness was evaluated using multiple metrics, such as accuracy, recall, precision, F1-score, and area under the receiver operating characteristic curve. Our findings indicate that the random forest optimized by the genetic algorithm achieved the best performance, with an accuracy of 97.39% and an F1-score of 97.35%. This study highlights the effectiveness of balancing and metaheuristics techniques in optimizing machine learning models for stroke forecasting

    Exploring the dynamics of providing cognition using a computational model of cognitive insomnia

    Get PDF
    Insomnia is a common sleep-related neuropsychological disorder that can lead to a range of problems, including cognitive deficits, emotional distress, negative thoughts, and a sense of insufficient sleep. This study proposes a providing computational dynamic cognitive model (PCDCM) insight into providing cognitive mechanisms of insomnia and consequent cognitive deficits. Since the support providing is significantly dynamic and it includes substantial changes as demanding condition happen. From this perspective the underlying model covers integrating of both coping strategies, provision preferences and adaptation concepts. The model was found to produce realistic behavior that could clarify conditions for providing support to handle insomnia individuals, which was done by employing simulation experiments under various negative events, personality resources, altruistic attitude and personality attributes. Simulation results show that, a person with bonadaptation and either problem focused or emotion focused coping can provide different social support based on his personality resources, personality attributes, and knowledge level, whereas a person with maladaptation regardless the coping strategies cannot provide any type of social support. Moreover, person with close tie tends to provide instrumental, emotional, and companionship support than from weak tie. Finally, a mathematical analysis was used to examine the possible equilibria of the model.

    1,361

    full texts

    1,375

    metadata records
    Updated in last 30 days.
    IAES International Journal of Artificial Intelligence (IJ-AI) is based in Indonesia
    Access Repository Dashboard
    Do you manage Open Research Online? Become a CORE Member to access insider analytics, issue reports and manage access to outputs from your repository in the CORE Repository Dashboard! 👇