Journal of Mechanical Engineering, Automation and Control Systems
Not a member yet
    156 research outputs found

    Multi-axis vibration test technology of satellite based on vector-fixture’s design and applications

    Get PDF
    Aiming at the problems that the three-direction uniaxial sequential vibration test cannot effectively simulate the real launch environment of the satellite, and the high cost of the multi-axis shaker and the limitation of engineering application, the multi-axis vibration test scheme based on vector-fixture is proposed. Taking the vibration magnitude of uniaxial vibration test on the satellite mounting surface as equivalent reference, the appropriate vector direction is determined to carry out vector-fixture design. By analyzing the multi-axial vibration test data of the real structure of a satellite, it can be seen that: The “satellite-fixture” mounting surface can reach the set vibration magnitude at low frequencies, and undertest occurs at high frequency due to structural resonance and other factors; By optimizing the control strategy, the degree of over-test and under-test in the three directions can be balanced. According to the mission characteristics and development cycle of micro-nano satellites, this paper provides an efficient vibration test scheme

    Potential of CCS at SC Achema

    Get PDF
    Achema is a leading producer of nitrogen fertilizers and chemical products in Lithuania and the Baltic states. First construction works of the factory date back to 1962, however officially the company was founded on February 9, 1965 after the first tons of synthetic ammonia were produced in a newly launched ammonia unit. Carbon capture and sequestration has been considered as suitable measure of decarbonization during middle term – till year 2030. There is developed technology and logistic chains for on shore and offshore projects. The geographical location of companies plays crucial role because of logistics. SC “Achema” yearly emits more than 2 million tons of CO2. Our advantage is in having 200-300 kilo T of pure CO2 suitable to liquify and transport. Disadvantage of this topic in Lithuania is political attitude and big distances till real wells at North Sea. The deep check of all aspects necessary to estimate real potential of CCS in Lithuania. The company aspires for significant reduction in greenhouse gas emissions and is the winner of ‘Most Environment Friendly Process' nomination for greenhouse gas emission (NO) mitigation in the nitric acid manufacturing process. Company aspires for sustainable and safe production of fertilizers and has also has also developed capabilities to liquify and transport CO2 over long distances. In this conference Achema’s capabilities to liquify 200-300 kilo T of pure CO2 will be highlighted. Potential challenges related to long distance transfer and political challenges will be also be highlighted

    Cephalometric components and their implications in mandibular positioning

    Get PDF
    The mandibular position is determined by several physiological factors, which should be considered for diagnosis, therapy and stability. Sixty-eight lateral skull radiographs were taken and plotted to determine the relationship of the occlusal plane with the mandibular position among others. A Spearman statistical analysis was performed to determine the relationship between these variables. The occlusal plane showed a statistically significant correlation with mandibular position

    Sloshing mitigation using vertical cylindrical baffle

    Get PDF
    This study has looked into the phenomenon of liquid vibrations in a rigid cylindrical container. The impacts of rigid vertical baffle positioned in the container on frequencies have been examined. The container is partially filled with an impermeable and non-viscous fluid. ANSYS software is used to report the mode shapes of the baffle and fluid domain

    Influence of the eccentricity error on the vibrations of a planetary gear

    Get PDF
    Planetary gear systems are widely used in wind power, ships, aircraft, and construction machinery, etc. In the planetary gear system, when the eccentricity error exists in the planetary gear, the vibrations of the whole system should be affected. However, the influence of the eccentricity error was rarely considered in the previous dynamic models. To solve this problem, a planetary gear system with six planetary gears is established. The influence of the eccentricity error on the vibrations of the planetary gear system is analyzed. Different eccentricity error cases in the planetary gears are considered in the model, as well as the bearings with the radial clearance. The model with the eccentricity error is compared with the normal model. The statistics of dynamic responses of the ring gear and its variations are analyzed. Not that the vibrations of the planetary gear transmission system increase with the eccentricity error of planetary gear. This study can provide a new method for simulating and detecting the eccentricity errors in the planetary gear systems

    Experimental investigation of bi-modular material coating to enhance damping

    Get PDF
    Hard coatings can be used to increase damping when applied on the surface of the components of turbomachinery. This can be effective to reduce the resonant vibration level of components working in a high cycle fatigue environment due to the extremely high operational speed. This paper discusses the experimental investigation of a bi-modular material hard coating to enhance damping in structural steel elements. Firstly, a hard coating (Al2O3+MgO) is applied on AISI 304L stainless steel substrate by plasma spraying. After that, a layer of chrome is deposited by chrome plating. Dynamic responses of both coated and uncoated samples are measured. The damping ratio of the test specimen is extracted from the time response by the logarithmic decrement method. Improved damping capacity of the coated steel sample is observed and is mainly attributed to the thin coating of chrome on the steel structure. The natural frequency of coated specimen showed 8 to 10 % improvement, the forced response showed a 30 to 35 % decrement in displacement, the damping ratio showed a 200 % increment, and the time of decaying showed a 20 % decrement. The results of the present study provide new ideas for the development of high-damping structural elements

    Bruxism and masticatory pattern: an understudied relationship

    Get PDF
    Bruxism as a pathophysiological entity, both day and night bruxism, has been the subject of innumerable investigations. Among the probable causes that have been raised are biochemical alterations in the central and/or peripheral nervous system, which can be seen reflected in an alteration of the rhythmic movements of the masticatory musculature of the stomatognathic system. On the other hand, chewing is recognized as one of the main functions of the stomatognathic system, responsible for maxillofacial growth and determining a rhythm in the movements of the masticatory musculature, depending in turn on a functional demand of the individual, in other words, the type of food consumed and the way to process it in the mouth. Objective: To determine the existence of a relationship between bruxism and the type of masticatory pattern installed in the patient. Methodology: Functional examinations and application of Fonseca questionnaires and bruxism self-report were performed in 27 adult patients, without distinction of sex, who have been diagnosed with possible and probable bruxism. Results: 100 % of the sample of subjects diagnosed with bruxism presented an altered masticatory pattern. Conclusions: The high correlation found in the sample between bruxism and masticatory pattern suggests that it is vital for the success of a bruxism treatment or a DTM to consider the way of processing food, by educating the patient with Masticatory Orientation. Based on the above, it proposes to conduct a study to evaluate the efficiency of a functional treatment for future Bruxism therapies

    Simulation and experimental investigation of kinematic characteristics of the wheeled in-pipe robot actuated by the unbalanced rotor

    Get PDF
    Mobile robotic systems are currently of significant interest due to the wide range of possible applications. Among a great variety of mobile robots, specific attention is paid to the wheeled ones. The main purpose of this research consists in substantiating the possibilities of improving the vibration-driven robot equipped with the unidirectionally rotating wheels. The methodology of the present study contains the development of the robot’s 3D-model in the SolidWorks software, constructing the simplified dynamic diagram of the robot’s oscillatory system, and developing its simulation model in the MapleSim software. The research results are obtained by numerical solving of the motion equations in the MapleSim software, by simulating the robot locomotion conditions in the SolidWorks software, and by conducting experiments. The results present the main kinematic characteristics of the robot motion under different operational conditions. The major scientific novelty of this paper consists in developing the improved design of the wheeled robot driven by the centrifugal (inertial) vibration exciter and substantiating its operational peculiarities. The obtained results can be effectively used while creating the production prototypes of mobile robotic systems, particularly those for cleaning the pipelines and monitoring (inspecting) their inner surfaces, welds, joints, couplings, etc

    Structure and movement, let’s not kill Chronos

    Get PDF
    The myth of Chronos that devours his children is the allegorical expression of time that ends everything, but there is another reading: that time exists and allows us to understand the idea of a process, of evolution, both biologically and in any other aspect of life. The structure is the static, current, measurable morphological expression of everything that has a physical manifestation. Movement is the expression of life that is inexorably written on the structure and is responsible for its dynamism and change. We have developed the ability to analyse the structure in a systematic and detailed way, isolating it from time, and therefore depriving it of the movement that animates it, fixing the moment with static photographic images. With direct cephalometric techniques or on radiography we have defined points and reference systems, measured, compared, made proportions, and described the layout. Like the Art, the Morphological Sciences evolve from a two-dimensional vision to a three-dimensional one and we have given importance to empty spaces. But unlike art, we have difficulty internalizing and becoming aware of movement and the vital energy that animates it. Studying Movement means studying Form along Time. Structure and Function are two sides of the same coin, and our field is a clear example of this. We cannot work on occlusion without understanding the functions associated with the whole system: breathing, swallowing, chewing, are the main sources of stimuli responsible for the development of the Stomatognathic System, which has the movement as its main engine. In our clinical practice we are convinced that seeking an integration between Form and Function provides balance and health to the system and therefore delays the negative effects of Time, and coherently understanding the Form-Function-Time triad provides a broader understanding of development and balance of our system

    Influence of barrier effect on barrier sheet pile wharf

    Get PDF
    This study aims to investigate the barrier effect of front wall-soil-barrier interactions in barrier sheet pile wharf structures. Berth 32 of the Jingtang Port was taken as the prototype structure, and the prototype observation experiment, centrifugal model test, and numerical calculation analysis were performed to study the influence of the length of the barrier pile, the spacing D between wall piles, and the net spacing L of the barrier pile on the barrier effect. The results show that, to maximize the barrier effect, the ratio N of the pile length of the full barrier pile to the depth of the front wall should be between 1.0 and 1.1. To maximize the barrier effect, the top elevation of the semi-barrier pile should not be excessively low. When the bottom elevation is fixed, the ratio of the length of the semi-barrier pile to the depth of the front wall is approximately N= 0.7. The change in the wall pile spacing D has a considerable impact on the barrier effect. Moreover, D has a logarithmic relationship to the horizontal displacement of the front wall. When D exceeds 3 m, the change in the barrier effect can be ignored. The part of the earth pressure shared by the sea and land sides of the barrier pile to the soil between the barrier pile and the barrier pile has a logarithmic relationship to the net spacing L of the barrier pile. The smaller the L, the better the barrier effect. When L exceeds 2 m, the earth pressure shared by the two parts tends to be average, and the barrier effect can be ignored

    156

    full texts

    156

    metadata records
    Updated in last 30 days.
    Journal of Mechanical Engineering, Automation and Control Systems
    Access Repository Dashboard
    Do you manage Open Research Online? Become a CORE Member to access insider analytics, issue reports and manage access to outputs from your repository in the CORE Repository Dashboard! 👇