NILU Brage
Not a member yet
3609 research outputs found
Sort by
Indian Land Carbon Sink Estimated from Surface and GOSAT Observations
The carbon sink over land plays a key role in the mitigation of climate change by removing carbon dioxide (CO2) from the atmosphere. Accurately assessing the land sink capacity across regions should contribute to better future climate projections and help guide the mitigation of global emissions towards the Paris Agreement. This study estimates terrestrial CO2 fluxes over India using a high-resolution global inverse model that assimilates surface observations from the global observation network and the Indian subcontinent, airborne sampling from Brazil, and data from the Greenhouse gas Observing SATellite (GOSAT) satellite. The inverse model optimizes terrestrial biosphere fluxes and ocean-atmosphere CO2 exchanges independently, and it obtains CO2 fluxes over large land and ocean regions that are comparable to a multi-model estimate from a previous model intercomparison study. The sensitivity of optimized fluxes to the weights of the GOSAT satellite data and regional surface station data in the inverse calculations is also examined. It was found that the carbon sink over the South Asian region is reduced when the weight of the GOSAT data is reduced along with a stricter data filtering. Over India, our result shows a carbon sink of 0.040 ± 0.133 PgC yr−1 using both GOSAT and global surface data, while the sink increases to 0.147 ± 0.094 PgC yr−1 by adding data from the Indian subcontinent. This demonstrates that surface observations from the Indian subcontinent provide a significant additional constraint on the flux estimates, suggesting an increased sink over the region. Thus, this study highlights the importance of Indian sub-continental measurements in estimating the terrestrial CO2 fluxes over India. Additionally, the findings suggest that obtaining robust estimates solely using the GOSAT satellite data could be challenging since the GOSAT satellite data yield significantly varies over seasons, particularly with increased rain and cloud frequency.publishedVersio
A Nano Risk Governance Portal supporting risk governance of nanomaterials and nano-enabled products
isk governance (RG) of nanomaterials (NMs) has been at the focus of the Horizon 2020 Programme of the European Union, through the funding of three research projects (Gov4Nano, NANORIGO, RISKGONE). The extensive collaboration of the three projects, in various scientific topics, aimed to enhance RG of NMs and provide a solid scientific basis for effective collaboration of the various types of stakeholders involved. In this paper the development of a digital Nano Risk Governance Portal (NRGP) and associated information technology (IT) infrastructure supporting the risk governance of (engineered) nanomaterials and nano-enabled products, is presented, alongside considerations for future work and enhancement within the domain of Advanced Materials (AdMa). This paper describes several elements of this digital portal, which serves as a single-entry point for all stakeholders in need of, or interested in, nano-risk governance aspects. In its simplest form, the NRGP allows users to be efficiently guided towards tailored information about nanomaterials, risk governance concepts, guidance documents, harmonized methods for risk assessment, publicly accessible data, information and knowledge, as well as a directory of tools, to assess the exposure and hazard of nanomaterials and perform Safe-and-Sustainable-by-Design (SSbD) assessment in the context of nano-risk governance. This paper presents the technical implementation and the content of the first version of the NRGP alongside the vision for the future and further plans for development, implementation, hosting and maintenance of the NRGP aimed at ensuring its sustainability. This includes a procedure to link to, or include, currently available and future (nano)material-related (cloud) platforms, decision support systems, tools, guidance, and databases in line with good governance objectives.A Nano Risk Governance Portal supporting risk governance of nanomaterials and nano-enabled productspublishedVersio
A scalable framework for harmonizing, standardization, and correcting crowd-sourced low-cost sensor PM2.5 data across Europe
Citizen-operated low-cost air quality sensors (LCSs) have expanded air quality monitoring through community engagement. However, still challenges related to lack of semantic standards, data quality, and interoperability hinder their integration into official air quality assessments, management, and research. Here, we introduce FILTER, a geospatially scalable framework designed to unify, correct, and enhance the reliability of crowd-sourced PM2.5 data across various LCS networks. FILTER assesses data quality through five steps: range check, constant value detection, outlier detection, spatial correlation, and spatial similarity. Using official data, we modeled PM2.5 spatial correlation and similarity (Euclidean distance) as functions of geographic distance as benchmarks for evaluating whether LCS measurements are sufficiently correlated/consistent with neighbors. Our study suggests a −10 to 10 Median Absolute Deviation threshold for outlier flagging (360 h). We find higher PM2.5 spatial correlation in DJF compared to JJA across Europe while lower PM2.5 similarity in DJF compared to JJA. We observe seasonal variability in the maximum possible distance between sensors and reference stations for in-situ (remote) PM2.5 data correction, with optimal thresholds of ∼11.5 km (DJF), ∼12.7 km (MAM), ∼20 km (JJA), and ∼17 km (SON). The values implicitly reflect the spatial representativeness of stations. ±15 km relaxation for each season remains feasible when data loss is a concern. We demonstrate and validate FILTER's effectiveness using European-scale data originating from the two community-based monitoring networks, sensor.community and PurpleAir with QC-ed/corrected output including 37,085 locations and 521,115,762 hourly timestamps. Results facilitate uptake and adoption of crowd-sourced LCS data in regulatory applications.publishedVersio
Unchanged PM2.5 levels over Europe during COVID-19 were buffered by ammonia
The coronavirus outbreak in 2020 had a devastating impact on human life, albeit a positive effect on the environment, reducing emissions of primary aerosols and trace gases and improving air quality. In this paper, we present inverse modelling estimates of ammonia emissions during the European lockdowns of 2020 based on satellite observations. Ammonia has a strong seasonal cycle and mainly originates from agriculture. We further show how changes in ammonia levels over Europe, in conjunction with decreases in traffic-related atmospheric constituents, modulated PM2.5. The key result of this study is a −9.8 % decrease in ammonia emissions in the period of 15 March–30 April 2020 (lockdown period) compared to the same period in 2016–2019, attributed to restrictions related to the global pandemic. We further calculate the delay in the evolution of the ammonia emissions in 2020 before, during, and after lockdowns, using a sophisticated comparison of the evolution of ammonia emissions during the same time periods for the reference years (2016–2019). Our analysis demonstrates a clear delay in the evolution of ammonia emissions of −77 kt, which was mainly observed in the countries that imposed the strictest travel, social, and working measures. Despite the general drop in emissions during the first half of 2020 and the delay in the evolution of the emissions during the lockdown period, satellite and ground-based observations showed that the European levels of ammonia increased. On one hand, this was due to the reductions in SO2 and NOx (precursors of the atmospheric acids with which ammonia reacts) that caused less binding and thus less chemical removal of ammonia (smaller loss – higher lifetime). On the other hand, the majority of the emissions persisted because ammonia mainly originates from agriculture, a primary production sector that was influenced very little by the lockdown restrictions. Despite the projected drop in various atmospheric aerosols and trace gases, PM2.5 levels stayed unchanged or even increased in Europe due to a number of reasons that were attributed to the complicated system. Higher water vapour during the European lockdowns favoured more sulfate production from SO2 and OH (gas phase) or O3 (aqueous phase). Ammonia first reacted with sulfuric acid, also producing sulfate. Then, the continuously accumulating free ammonia reacted with nitric acid, shifting the equilibrium reaction towards particulate nitrate. In high-free-ammonia atmospheric conditions such as those in Europe during the 2020 lockdowns, a small reduction in NOx levels drives faster oxidation toward nitrate and slower deposition of total inorganic nitrate, causing high secondary PM2.5 levels.publishedVersio
Methane emissions from Australia estimated by inverse analysis using in-situ and Satellite (GOSAT) atmospheric observations
Australia has significant sources of atmospheric methane (CH₄), driven by extensive coal and natural gas production, livestock, and large-scale fires. Accurate quantification and characterization of CH₄ emissions are critical for effective climate mitigation strategies in Australia. In this study, we employed an inverse analysis of atmospheric CH₄ observations from the GOSAT satellite and surface measurements from 2016 to 2021 to assess CH₄ emissions in Australia. The inversion process integrates anthropogenic and natural emissions as prior estimates, optimizing them with the NIES-TM-FLEXPART-variational model (NTFVAR) at a resolution of up to 0.1° × 0.1°. We validated the performance of our inverse model using data obtained from the United Nations Environment Program Methane Science (UNEP), Airborne Research Australia 2018 aircraft-based atmospheric CH₄ measurement campaigns. Compared to prior emission estimates, optimized emissions dramatically enhanced the accuracy of modeled concentrations, aligning them much better with observations. Our results indicate that the estimated inland CH4 emissions in Australia amount to 6.84 ± 0.51 Tg CH4 yr−1 and anthropogenic emissions amount to 4.20 ± 0.08 Tg CH4 yr−1, both slightly lower than the values reported in existing inventories. Moreover, our results unveil noteworthy spatiotemporal characteristics, such as upward corrections during the warm season, particularly in Southeastern Australia. During the three most severe months of the 2019–2020 bushfire season, emissions from biomass burning surged by 0.68 Tg, constituting over 71% of the total emission increase. These results highlight the importance of continuous observation and analysis of sectoral emissions, particularly near major sources, to guide targeted emission reduction strategies. The spatiotemporal characteristics identified in this study underscore the need for adaptive and region-specific approaches to CH₄ emission management in Australia.Methane emissions from Australia estimated by inverse analysis using in-situ and Satellite (GOSAT) atmospheric observationspublishedVersio
Sb-PiPLU: A Novel Parametric Activation Function for Deep Learning
The choice of activation function—particularly non-linear ones—plays a vital role in enhancing the classification performance of deep neural networks. In recent years, a variety of non-linear activation functions have been proposed. However, many of these suffer from drawbacks that limit the effectiveness of deep learning models. Common issues include the dying neuron problem, bias shift, gradient explosion, and vanishing gradients. To address these challenges, we introduce a new activation function: Softsign-based Piecewise Parametric Linear Unit (Sb-PiPLU). This function offers improved non-linear approximation capabilities for neural networks. Its piecewise, parametric design allows for greater adaptability and flexibility, which in turn enhances overall model performance. We evaluated Sb-PiPLU through a series of image classification experiments across various Convolutional Neural Network (CNN) architectures. Additionally, we assessed its memory usage and computational cost, demonstrating that Sb-PiPLU is both stable and efficient in practical applications. Our experimental results show that Sb-PiPLU consistently outperforms conventional activation functions in both classification accuracy and computational efficiency. It achieved higher accuracy on multiple benchmark datasets, including CIFAR-10, CINIC-10, MWD, Brain Tumor, and SVHN, surpassing widely-used functions such as ReLU and Tanh. Due to its flexibility and robustness, Sb-PiPLU is particularly well-suited for complex image classification tasks.publishedVersio
Anthropogenic compounds in the northernmost Atlantic puffin population
Contamination by organic pollutants, even in remote regions, poses a growing threat to wildlife, including seabirds. However, for many seabirds breeding at high latitudes, both the extent and nature of contaminant exposure remain largely unknown. This study aimed to identify the persistent organic pollutants (POPs) present in the Svalbard Atlantic puffin Fratercula arctica at the northern limit of its range. We also compare contaminant concentrations with those found in other species breeding on Svalbard and in puffin colonies further south. The Svalbard puffins were found to be contaminated by organochlorine pesticides (OCPs), polychlorinated biphenyls (PCBs), and per- and polyfluoroalkyl substances (PFAS). No significant sex difference was found. OCPs, PCBs and/or PFASs concentrations in Svalbard puffins were comparable to those of Brünnich's guillemots Uria lomvia, black guillemots Cepphus grylle, and/or little auks Alle alle, but lower than in glaucous gulls Larus hyperboreus. PFAS concentrations were also lower than in black-legged kittiwakes Rissa tridactyla. OCP and PCB concentrations were lower on Svalbard than in puffin colonies further south. This study is the first to document PFAS concentrations in puffins, therefore it remains unknown whether PFAS levels were also lower on Svalbard than further south. These comparisons should be interpreted with caution, as data for different species or colonies were collected in different years, and contaminant levels vary over time. The current contaminant concentrations indicate that Svalbard puffins are still at low risk for biological effects, but continued monitoring is needed to assess potential future changes.publishedVersio
Stochastic and deterministic processes in Asymmetric Tsetlin Machine
This paper introduces a new approach to enhance the decision-making capabilities of the Tsetlin Machine (TM) through the Stochastic Point Location (SPL) algorithm and the Asymmetric Steps technique. We incorporate stochasticity and asymmetry into the TM's process, along with a decaying normal distribution function that improves adaptability as it converges toward zero over time. We present two methods: the Asymmetric Probabilistic Tsetlin (APT) Machine, influenced by random events, and the Asymmetric Tsetlin (AT) Machine, which transitions from probabilistic to deterministic states. We evaluate these methods against traditional machine learning algorithms and classical Tsetlin (CT) machines across various benchmark datasets. Both AT and APT demonstrate competitive performance, with the AT model notably excelling, especially in complex datasets.publishedVersio
MusicReco: Interactive Interface Modeling With User-Centered Design in a Music Recommendation System
Recommendation technologies are widespread in streaming services, e-commerce, social media, news, and content management. Besides recommendation generation, its presentation is also important. Most research and development focus on the technical aspects of recommendation generation; therefore, a gap exists between recommendation generation and its effective presentation and user interaction. This study focuses on how personalized recommendations can be presented and interacted with in a music recommendation system using interactive visual interfaces. Interactive interface modeling with User-Centered Design (UCD) in a recommendation system is essential for creating a user-friendly, engaging, and personalized experience. By involving users in the recommendation process and considering their feedback, the system can deliver more relevant content, foster user trust, and improve overall user satisfaction and engagement. In this study, the visual interface design and development of a personalized music recommendation prototype (MusicReco) are presented using an iterative UCD approach, involving twenty end-users, one researcher, three academic professionals, and four experts. As the study is more inclined toward the recommendation presentation and visual modeling, we used a standard content-based filtering algorithm on the publicly available Spotify dataset for music recommendation generation. End-users helped to mature the MusicReco prototype to a basic working version through continuous feedback and design inputs on their needs, context, preferences, personalization, and effective visualization. Moreover, MusicReco captures the idea of mood-based tailored recommendations to encourage end-users. Overall, this study demonstrates how UCD can enhance the presentation and interaction of mood-based music recommendations, effectively engaging users with advancements in recommendation algorithms as a future focus.publishedVersio
Stress management with HRV following AI, semantic ontology, genetic algorithm and tree explainer
Heart Rate Variability (HRV) serves as a vital marker of stress levels, with lower HRV indicating higher stress. It measures the variation in the time between heartbeats and offers insights into health. Artificial intelligence (AI) research aims to use HRV data for accurate stress level classification, aiding early detection and well-being approaches. This study’s objective is to create a semantic model of HRV features in a knowledge graph and develop an accurate, reliable, explainable, and ethical AI model for predictive HRV analysis. The SWELL-KW dataset, containing labeled HRV data for stress conditions, is examined. Various techniques like feature selection and dimensionality reduction are explored to improve classification accuracy while minimizing bias. Different machine learning (ML) algorithms, including traditional and ensemble methods, are employed for analyzing both imbalanced and balanced HRV datasets. To address imbalances, various data formats and oversampling techniques such as SMOTE and ADASYN are experimented with. Additionally, a Tree-Explainer, specifically SHAP, is used to interpret and explain the models’ classifications. The combination of genetic algorithm-based feature selection and classification using a Random Forest Classifier yields effective results for both imbalanced and balanced datasets, especially in analyzing non-linear HRV features. These optimized features play a crucial role in developing a stress management system within a Semantic framework. Introducing domain ontology enhances data representation and knowledge acquisition. The consistency and reliability of the Ontology model are assessed using Hermit reasoners, with reasoning time as a performance measure. HRV serves as a significant indicator of stress, offering insights into its correlation with mental well-being. While HRV is non-invasive, its interpretation must integrate other stress assessments for a holistic understanding of an individual’s stress response. Monitoring HRV can help evaluate stress management strategies and interventions, aiding individuals in maintaining well-being.publishedVersio