39845 research outputs found
Sort by
Fitokontakt dermatit: Olgu sunumu
Introduction: Herbal medicines are used for different purposes by applying them directly to the skin. Case Report: A 57-year-old female patient presented with erythema and swelling of the left knee. On examination, erythematous and bullous lesions were observed. In the story of 'Ranunculus Scleratus' plants 12 hours knee closed contact of the learned. Diagnosis; Fitokontakt thought of as Dermatitis patients to wet dressing is recommended. 1 month after hyperemia outside of a clinical finding out. Conclusion: Treatment with plants in our community are used as often as incorrect use can lead to harmful effects
Twist-writhe partitioning in a coarse-grained DNA minicircle model
Here we present a systematic study of supercoil formation in DNA minicircles under varying linking number by using molecular-dynamics simulations of a two-bead coarse-grained model. Our model is designed with the purpose of simulating long chains without sacrificing the characteristic structural properties of the DNA molecule, such as its helicity, backbone directionality, and the presence of major and minor grooves. The model parameters are extracted directly from full-atomistic simulations of DNA oligomers via Boltzmann inversion; therefore, our results can be interpreted as an extrapolation of those simulations to presently inaccessible chain lengths and simulation times. Using this model, we measure the twist/writhe partitioning in DNA minicircles, in particular its dependence on the chain length and excess linking number. We observe an asymmetric supercoiling transition consistent with experiments. Our results suggest that the fraction of the linking number absorbed as twist and writhe is nontrivially dependent on chain length and excess linking number. Beyond the supercoiling transition, chains of the order of one persistence length carry equal amounts of twist and writhe. For longer chains, an increasing fraction of the linking number is absorbed by the writhe
Computation of the canonical lifting via division polynomials
We study the canonical lifting of ordinary elliptic curves over the ring of Witt vectors. We prove that the canonical lifting is compatible with the base field of the given ordinary elliptic curve which was first proved in Finotti, J. Number Theory 130 (2010), 620-638. We also give some results about division polynomials of elliptic curves de fined over the ring of Witt vectors
Investigation of the ınteraction between the large and small subunits of potato ADP-glucose pyrophosphorylase
ADP-glucose pyrophosphorylase (AGPase), a key allosteric enzyme involved in higher plant starch biosynthesis, is composed of pairs of large (LS) and small subunits (SS). Current evidence indicates that the two subunit types play distinct roles in enzyme function. Recently the heterotetrameric structure of potato AGPase has been modeled. In the current study, we have applied the molecular mechanics generalized born surface area (MM-GBSA) method and identified critical amino acids of the potato AGPase LS and SS subunits that interact with each other during the native heterotetrameric structure formation. We have further shown the role of the LS amino acids in subunit-subunit interaction by yeast two-hybrid, bacterial complementation assay and native gel. Comparison of the computational results with the experiments has indicated that the backbone energy contribution (rather than the side chain energies) of the interface residues is more important in identifying critical residues. We have found that lateral interaction of the LS-SS is much stronger than the longitudinal one, and it is mainly mediated by hydrophobic interactions. This study will not only enhance our understanding of the interaction between the SS and the LS of AGPase, but will also enable us to engineer proteins to obtain better assembled variants of AGPase which can be used for the improvement of plant yield
Lubricated friction and volume dilatancy are coupled
Dilation (expansion of film thickness) by similar to0.1 A, which is less than one-tenth of the width of confined fluid molecules, was observed when confined films crossed from the resting state ("static friction") to sliding ("kinetic friction"). These measurements were based on using piezoelectric bimorph sensors possessing extremely high resolution for detecting position changes, during the course of sliding molecularly thin films of squalane, a model lubricant fluid, between atomically smooth single crystals of mica. Detailed inspection of energy balance shows that the dilation data and the friction forces satisfied energy conservation of identifiable energies at the slip point, from static to kinetic friction. This shows experimentally, for the first time to the best of our knowledge, a direct coupling between friction forces and decrease in the mean density of the intervening molecularly thin fluid
Mitigation of 50-60 Hz power line interference in geophysical data
The analysis of ELF/VLF radio data has broad applications for ionospheric and magnetospheric phenomena, lightning activity, long-range communications, and geophysical prospecting. However, recordings of ELF/VLF data on the ground are adversely affected by the presence of electromagnetic fields from 50-60 Hz power lines, whose harmonics can extend to many kilohertz and interfere with the detection of natural and man-made signals. Removal of this interference is complicated by the time-varying fundamental frequency of power lines and strongly varying characteristics across different power grids. We discuss two methods for isolation and then subtraction of this interference, by an adaptive filtering technique and with least squares matrix analysis. Methods for estimating the time-varying frequency are also discussed. A few variants of these techniques are applied both to simulated data and then to real data. It is found that least squares isolation gives superior results, although the adaptive filter is potentially more effective for poorly behaved power line interference with rapidly changing fundamental frequencies as well as being computationally more efficient
Differing current and optical return stroke speeds in lightning
During the return stroke in downward negative cloud-to-ground lightning, a current wave propagates upward from the ground along the lightning channel. The current wave causes rapid heating of the channel and induces intense optical radiation. The optical radiation wave propagation speed along the channel has been measured to be between 1/5 and 2/3 of the speed of light. The current wave speed is commonly assumed to be the same but cannot be directly measured. Past modeling efforts treat either the thermodynamics or electrodynamics. We present the first model that simultaneously treats the coupled current and thermodynamic physics in the return stroke channel. We utilize numerical simulations using realistic high-temperature air plasma properties that self-consistently solve Maxwell's equations coupled with equations of air plasma thermodynamics. The predicted optical radiation wave speed, rise time, and attenuation agree well with observations. The model predicts significantly higher current return stroke speed
Successful focal ablation in a patient with electrical storm in the early postinfarction period: case report
Electrical storm (ES) is associated with a poor prognosis if it occurs in the early postinfarction period (within 4 weeks). There are limited data on the efficacy and safety of catheter ablation in the early period. In the patients with postinfarction cardiomyopathy, ventricular tachycardia (VT) is usually caused by re-entry through slowly conducting tissue within areas of a myocardial scar, whereas for the early postinfarction period, the underlying mechanism of ES is not fully understood. We report a case of ES for which macroreentry was excluded as a mechanism of VT because of the clinical and electrophysiological properties of the tachycardia. The tachycardia was terminated by focal radiofrequency catheter ablation of the earliest site. The total procedure time was only 35 minutes. During a 12-month follow-up period, the patient has remained free of monomorphic VT episodes. On the basis of this case, we aimed to discuss the underlying mechanism of ES in the early postinfarction period and to evaluate the role of radiofrequency catheter ablation as a primary approach for treating ES
High-performance silicon scanning mirror for laser printing
This paper describes the design, fabrication, and characterization of the first MEMS scanning mirror with performance matching the polygon mirrors currently used for high-speed consumer laser printing. It has reflector dimensions of 8mm × 0.75mm, and achieves 80° total optical scan angle at an oscillation frequency of 5kHz. This performance enables the placement of approximately 14,000 individually resolvable dots per line at a rate of 10,000 lines per second, a record-setting speed and resolution combination for a MEMS scanner. The scanning mirror is formed in a simple microfabrication process by gold reflector deposition and patterning, and through-wafer deep reactive-ion etching. The scanner is actuated by off-the-shelf piezo-ceramic stacks mounted to the silicon structure in a steel package. Device characteristics predicted by a mathematical model are compared to measurements
Vitamin E, turmeric and saffron in treatment of alzheimer’s disease
Alzheimer’s disease (AD) is a growing epidemic and currently there is no cure for the disease. The disease has a detrimental effect on families and will strain the economy and health care systems of countries worldwide. The paper provides a literature review on a few ongoing possible antioxidant therapy treatments for the disease. The paper highlights use of vitamin E, turmeric and saffron for an alternative antioxidant therapy approach. Clinical studies report their therapeutic abilities as protective agents for nerve cells against free radical damage, moderating acetylcholinesterase (AChE) activity and reducing neurodegeneration, which are found as key factors in Alzheimer’s. The paper suggests that future research, with more clinical trials focused on more natural approaches and their benefits for AD treatment could be worthwhile