5673 research outputs found
Sort by
SCARA with Path trajectory
The following Matlab project contains the source code and Matlab examples used for SCARA with Path trajectory. By defining the initial position and final position the robot will follow the path between these two point
Energetic reasoning revisited: application to parallel machine scheduling
Due to copyright restrictions, the access to the full text of this article is only available via subscription.We consider the problem of minimizing makespan on identical parallel machines subject to release dates and delivery times. We present several new feasibility tests and adjustment techniques that consistently improve theclassical energetic reasoning approach. Computational results carried out on a set of hard instances provide strong evidence that the performance of a state-of-the-art exact branch-and-bound algorithm is substantially improved through embedding the proposed enhanced energetic reasoning.Princess Fatimah Alnajras’s Research Chair of Advanced Manufacturing Technolog
Detecting credit card fraud by modified Fisher discriminant analysis
Due to copyright restrictions, the access to the full text of this article is only available via subscription.In parallel to the increase in the number of credit card transactions, the financial losses due to fraud have also increased. Thus, the popularity of credit card fraud detection has been increased both for academicians and banks. Many supervised learning methods were introduced in credit card fraud literature some of which bears quite complex algorithms. As compared to complex algorithms which somehow over-fit the dataset they are built on, one can expect simpler algorithms may show a more robust performance on a range of datasets. Although, linear discriminant functions are less complex classifiers and can work on high-dimensional problems like credit card fraud detection, they did not receive considerable attention so far. This study investigates a linear discriminant, called Fisher Discriminant Function for the first time in credit card fraud detection problem. On the other hand, in this and some other domains, cost of false negatives is very higher than false positives and is different for each transaction. Thus, it is necessary to develop classification methods which are biased toward the most important instances. To cope for this, a Modified Fisher Discriminant Function is proposed in this study which makes the traditional function more sensitive to the important instances. This way, the profit that can be obtained from a fraud/legitimate classifier is maximized. Experimental results confirm that Modified Fisher Discriminant could eventuate more profit.TÜBİTA