Qucosa – Hemholtz-Zentrum Dresden-Rossendorf
Not a member yet
    800 research outputs found

    Optimisation strategies for proton acceleration from thin foils with petawatt ultrashort pulse lasers

    Get PDF
    Laser-driven plasma accelerators can produce high-energy, high peak current ion beams by irradiating solid materials with ultra-intense laser pulses. This innovative concept attracts a lot of attention for various multidisciplinary applications as a compact and energy-efficient alternative to conventional accelerators. The maturation of plasma accelerators from complex physics experiments to turnkey particle sources for practical applications necessitates breakthroughs in the generated beam parameters, their robustness and scalability to higher repetition rates and efficiencies. This thesis investigates viable optimisation strategies for enhancing ion acceleration from thin foil targets in ultra-intense laser-plasma interactions. The influence of the detailed laser pulse parameters on plasma-based ion acceleration has been systematically investigated in a series of experiments carried out on two state-of-the-art high-power laser systems. A central aspect of this work is the establishment and integration of laser diagnostics and operational techniques to advance control of the interaction conditions for maximum acceleration performance. Meticulous efforts in continuously monitoring and enhancing the temporal intensity contrast of the laser system, enabled to optimise ion acceleration in two different regimes, each offering unique perspectives for applications. Using the widely established target-normal sheath acceleration (TNSA) scheme and adjusting the temporal shape of the laser pulse accordingly, proton energies up to 70 MeV were reliably obtained over many months of operation. Asymmetric laser pulses, deviating significantly from the standard conditions of an ideally compressed pulse, resulted in the highest particle numbers and an average energy gain ≥ 37 %. This beam quality enhancement is demonstrated across a broad range of parameters, including thickness and material of the target, laser energy and temporal intensity contrast. To overcome the energy scaling limitations of TNSA, the second part of the thesis focuses on an advanced acceleration scheme occurring in the relativistically induced transparency (RIT) regime. The combination of thin foil targets with precisely matched temporal contrast conditions of the laser enabled a transition of the initially opaque targets to transparency upon main pulse arrival. Laser-driven proton acceleration to a record energy of 150 MeV is experimentally demonstrated using only 22 J of laser energy on target. The low-divergent high-energy component of the accelerated beam is spatially and spectrally well separated from a lower energetic TNSA component. Start-to-end simulations validate these results and elucidate the role of preceding laser light in pre-expanding the target along with the detailed acceleration dynamics during the main pulse interaction. The ultrashort pulse duration of the laser facilitates a rapid succession of multiple known acceleration regimes to cascade efficiently at the onset of RIT, leading to the observed beam parameters and enabling ion acceleration to unprecedented energies. The discussed acceleration scheme was successfully replicated at two different laser facilities and for different temporal contrast levels. The results demonstrate the robustness of this scenario and that the optimum target thickness decreases with improved laser contrast due to reduced pre-expansion. Target transparency was found to identify the best-performance shots within the acquired data sets, making it a suitable feedback parameter for automated laser and target optimisation to enhance stability of plasma accelerators in the future. Overall, the obtained results and described optimisation strategies of this thesis may become the guiding step for the further development of laser-driven ion accelerators

    Strahlungseinfangreaktionen für die nukleare Astrophysik und die Energiekalibration von Ionenbeschleunigern

    Get PDF
    Ein präzises Verständnis über die Entstehung der Elemente im Universum stellt ein hoch- relevantes Kernthema der nuklearen Astrophysik dar. Vor diesem Hintergrund wurde die 12C(p,γ)13N-Reaktion untersucht, die als Startreaktion des CNO-Zyklus Einfluss auf das Verhältnis von 12C zu 13C im Universum nimmt. Die analysierten Messdaten wurden in in- verser Kinematik am Tandetron-Beschleuniger des Helmholtz-Zentrum Dresden-Rossendorf aufgenommen. Der resultierende S-Faktor, vermessen im Bereich der 421keV-Resonanz, liegt im Mittel 23% unterhalb etablierter Literaturdaten, deckt sich aber mit den Ergeb- nissen anderer kürzlich veröffentlichter Messdaten. Die in dieser Analyse ebenfalls erschwerte präzise Untersuchung niedriger, aber astrophy- sikalisch relevanter Energien kann durch Untertagelabore und der damit einhergehenden Abschirmung vor kosmischer Strahlung erreicht werden. In der vorliegenden Arbeit werden in diesem Bestreben erste mit dem 5 MV-Tandem-Beschleuniger untersuchte Kernreaktio- nen am Felsenkeller-Untertagelabor in Dresden vorgestellt. Aus Untersuchungen der 14N(α,γ)18F-, der 13C(p,γ)14N- und der 27Al(p,γ)28Si-Reaktion wurden dabei präzise Werte für die Energiekalibration des Ionenbeschleunigers ermittelt. Es wird ein Vergleich mit weiteren Möglichkeiten zur Bestimmung dieses Kalibrationsfaktors präsentiert und aus diesem Vergleich ein Wert von k = 0,9572 ± 0,0004 zur Kalibration der Hochspannung des Beschleunigers abgeleitet. Die vorgestellte Herangehensweise zur Bestimmung dieses Faktors und die dokumentier- ten Erkenntnisse und Analysen zu optimalen Betriebsparametern von Beschleuniger und der zugehörigen Radiofrequenz-Ionenquelle werden auch für zukünftige protonen- und he- liumstrahlinduzierte Untersuchungen im Felsenkeller-Untertagelabor von Relevanz sein

    Annual Report 2023 - Institute of Resource Ecology

    Get PDF
    The IRE is one of the ten institutes of the Helmholtz-Zentrum Dresden-Rossendorf (HZDR). Our research ac-tivities are mainly integrated into the program “Nuclear Waste Management, Safety and Radiation Research (NUSAFE)” of the Helmholtz Association (HGF) and fo-cus on the topics “Safety of Nuclear Waste Disposal” and “Safety Research for Nuclear Reactors”. The program NUSAFE, and therefore all work which is done at IRE, belong to the research field “Energy” of the HGF

    Temporal contrast-dependent modeling of laser-driven solids - studying femtosecond-nanometer interactions and probing

    Get PDF
    Establishing precise control over the unique beam parameters of laser-accelerated ions from relativistic ultra-short pulse laser-solid interactions has been a major goal for the past 20 years. While the spatio-temporal coupling of laser-pulse and target parameters create transient phenomena at femtosecond-nanometer scales that are decisive for the acceleration performance, these scales have also largely been inaccessible to experimental observation. Computer simulations of laser-driven plasmas provide valuable insight into the physics at play. Nevertheless, predictive capabilities are still lacking due to the massive computational cost to perform these in 3D at high resolution for extended simulation times. This thesis investigates the optimal acceleration of protons from ultra-thin foils following the interaction with an ultra-short ultra-high intensity laser pulse, including realistic contrast conditions up to a picosecond before the main pulse. Advanced ionization methods implemented into the highly scalable, open-source particle-in-cell code PIConGPU enabled this study. Supporting two experimental campaigns, the new methods led to a deeper understanding of the physics of Laser-Wakefield acceleration and Colloidal Crystal melting, respectively, for they now allowed to explain experimental observations with simulated ionization- and plasma dynamics. Subsequently, explorative 3D3V simulations of enhanced laser-ion acceleration were performed on the Swiss supercomputer Piz Daint. There, the inclusion of realistic laser contrast conditions altered the intra-pulse dynamics of the acceleration process significantly. Contrary to a perfect Gaussian pulse, a better spatio-temporal overlap of the protons with the electron sheath origin allowed for full exploitation of the accelerating potential, leading to higher maximum energies. Adapting well-known analytic models allowed to match the results qualitatively and, in chosen cases, quantitatively. However, despite complex 3D plasma dynamics not being reflected within the 1D models, the upper limit of ion acceleration performance within the TNSA scenario can be predicted remarkably well. Radiation signatures obtained from synthetic diagnostics of electrons, protons, and bremsstrahlung photons show that the target state at maximum laser intensity is encoded, previewing how experiments may gain insight into this previously unobservable time frame. Furthermore, as X-ray Free Electron Laser facilities have only recently begun to allow observations at femtosecond-nanometer scales, benchmarking the physics models for solid-density plasma simulations is now in reach. Finally, this thesis presents the first start-to-end simulations of optical-pump, X-ray-probe laser-solid interactions with the photon scattering code ParaTAXIS. The associated PIC simulations guided the planning and execution of an LCLS experiment, demonstrating the first observation of solid-density plasma distribution driven by near-relativistic short-pulse laser pulses at femtosecond-nanometer resolution

    Annual Report 2022 - Institute of Resource Ecology

    Get PDF
    The Institute of Resource Ecology (IRE) is one of the ten institutes of the Helmholtz-Zentrum Dresden – Rossendorf (HZDR). Our research activities are mainly integrated into the program “Nuclear Waste Management, Safety and Ra-diation Research (NUSAFE)” of the Helmholtz Association (HGF) and focus on the topics “Safety of Nuclear Waste Disposal” and “Safety Research for Nuclear Reactors”. The program NUSAFE, and therefore all work which is done at IRE, belong to the research field “Energy” of the HGF

    Fracture mechanics investigation of reactor pressure vessel steels by means of sub-sized specimens (KLEINPROBEN)

    Get PDF
    The embrittlement of reactor pressure vessel (RPV) steels due to neutron irradiation restricts the operating lifetime of nuclear reactors. The reference temperature 0, obtained from fracture mechanics testing using the Master Curve concept, is a good indicator of the irradiation resistance of a material. The measurement of the shift in 0 after neutron irradiation, which accompanies the embrittlement of the material, using the Master Curve concept, enables the assessment of the reactor materials. In the context of worldwide life time extensions of nuclear power plants, the limited availability of neutron irradiated materials (surveillance materials) is a challenge. Testing of miniaturized 0.16T C(T) specimens manufactured from already tested standard Charpy-sized specimens helps to solve the material shortage problem. In this work, four different reactor pressure vessel steels with different compositions were investigated in the unirradiated and in the neutron-irradiated condition. A total number of 189 mini-C(T) samples were fabricated and tested. An important component of this study is the transferability of fracture mechanics data from mini-C(T) to standard Charpy-sized specimen. Our results demonstrate good agreement of the reference temperatures from the mini-C(T) specimens with those from standard Charpy-sized specimens. RPV steels containing higher Cu and P contents exhibit a higher increase in 0 after irradiation. The fracture surfaces were investigated using SEM in order to record the location of the fracture initiators. The fracture modes were also determined. A large number of test results formed the basis for a censoring probability function, which was used to optimally select the testing temperature in Master Curve testing. The effect of the slow stable crack growth censoring criteria from ASTM E1921 on the determination of 0 was analysed and found to have a minor effect. Our results demonstrate the validity of mini-C(T) specimen testing and confirm the role of the impurity elements Cu and P in neutron embrittlement. We anticipate further research linking microstructure to the fracture properties of materials before and after neutron irradiation and the optimization of Master Curve testing using the results from our statistical analysis

    Primordial nuclides and low-level counting at Felsenkeller

    Get PDF
    Within cosmology, there are two entirely independent pillars which can jointly drive this field towards precision: Astronomical observations of primordial element abundances and the detailed surveying of the cosmic microwave background. However, the comparatively large uncertainty stemming from the nuclear physics input is currently still hindering this effort, i.e. stemming from the 2H(p,γ)3He reaction. An accurate understanding of this reaction is required for precision data on primordial nucleosynthesis and an independent determination of the cosmological baryon density. Elsewhere, our Sun is an exceptional object to study stellar physics in general. While we are now able to measure solar neutrinos live on earth, there is a lack of knowledge regarding theoretical predictions of solar neutrino fluxes due to the limited precision (again) stemming from nuclear reactions, i.e. from the 3He(α,γ)7Be reaction. This thesis sheds light on these two nuclear reactions, which both limit our understanding of the universe. While the investigation of the 2H(p,γ)3He reaction will focus on the determination of its cross- section in the vicinity of the Gamow window for the Big Bang nucleosynthesis, the main aim for the 3He(α,γ)7Be reaction will be a measurement of its γ-ray angular distribution at astrophysically relevant energies. In addition, the installation of an ultra-low background counting setup will be reported which further enables the investigation of the physics of rare events. This is essential for modern nuclear astrophysics, but also relevant for double beta decay physics and the search for dark matter. The presented setup is now the most sensitive in Germany and among the most sensitive ones worldwide

    Annual Report 2022 - Institute of Ion Beam Physics and Materials Research

    Get PDF
    Preface Selected publications Statistics (Publications and patents, Concluded scientific degrees; Appointments and honors; Invited conference contributions, colloquia, lectures and talks; Conferences, workshops, colloquia and seminars; Exchange of researchers; Projects) Doctoral training programme Experimental equipment User facilities and services Organization chart and personne

    Neutronenfluss in Untertagelaboren

    Get PDF
    Das Felsenkellerlabor ist ein neues Untertagelabor im Bereich der nuklearen Astrophysik. Es befindet sich unter 47 m Hornblende-Monzonit Felsgestein im Stollensystem der ehemaligen Dresdner Felsenkellerbrauerei. Im Rahmen dieser Arbeit wird der Neutronenuntergrund in Stollen IV und VIII untersucht. Gewonnene Erkenntnisse aus Stollen IV hatten direkten Einfluss auf die geplanten Abschirmbedingungen fur Stollen VIII. Die Messung wurde mit dem Hensa-Neutronenspektrometer durchgeführt, welches aus polyethylenmoderierten 3He-Zählrohren besteht. Mit Hilfe des Monte-Carlo Programmes Fluka zur Simulation von Teilchentransport werden für das Spektrometer die Neutronen-Ansprechvermögen bestimmt. Fur jeden Messort wird außerdem eine Vorhersage des Neutronenflusses erstellt und die Labore hinsichtlich der beiden Hauptkomponenten aus myoneninduzierten Neutronen und Gesteinsneutronen aus (α,n)-Reaktionen und Spaltprozessen kartografiert. Die verwendeten Mess- und Analysemethoden finden in einer neuen Messung am tiefen Untertagelabor Lsc Canfranc Anwendung. Erstmalig werden im Rahmen dieser Arbeit vorläufige Ergebnisse vorgestellt. Des Weiteren werden Strahlenschutzsimulationen fur das Felsenkellerlabor präsentiert, welche den strahlenschutztechnischen Rahmen für die wissenschaftliche Nutzung definieren. Dabei werden die für den Sicherheitsbericht des Felsenkellers verwendeten Werte auf die Strahlenschutzverordnung 2018 aktualisiert. Letztlich werden Experimente an der Radiofrequenz-Ionenquelle am Felsenkeller vorgestellt, die im Rahmen dieser Arbeit technisch betreut wurde. Dabei werden Langzeitmessungen am übertägigen Teststand am Helmholtz-Zentrum Dresden-Rossendorf präsentiert

    Laser-proton acceleration in the near-critical regime using density tailored cryogenic hydrogen jets

    Get PDF
    Modern particle accelerators are a key component of today’s research landscape and indispensable in industry and medicine. In special application areas, the portfolio of these facilities will be expanded by laser-driven compact plasma accelerators that generate short, high-intensity pulses of ions with unique beam properties. Though intensely explored by the community, scaling the maximum beam energies of laser-driven ion accelerators to the required level is one of the most significant challenges of this field. This endeavor is inherently linked to a fundamental understanding of the underlying acceleration processes. The prospect to effciently increase the beam energy relies on the ability to control the accelerating field structures beyond the well-established acceleration from the stationary target rear side. However, manipulating the interaction in such micrometer-sized accelerators proves to be challenging due to the transient nature of the plasma fields and requires precise tuning of the temporal laser pulse shape and the volumetric density distribution of the plasma target to a level that could so far not be achieved. This thesis investigates laser-proton acceleration using a cryogenic hydrogen target that combines the capabilities of predictive three-dimensional simulation and the in-situ realtime monitoring of the density distribution in the experiment to explore the fundamental physical principles of plasma based acceleration mechanisms. The corresponding experiments were performed at the DRACO laser facility at the Helmholtz-Zentrum Dresden-Rossendorf. The key to the success of these studies was the advancement of the cryogenic target system that generates a self-replenishing pure hydrogen jet. Using a mechanical chopping device, which protects the target system from the disruptive influence originating from the high-intensity interaction, allowed, for the first time, systematic experiments with a large number of laser shots in the harsh environment of the ultra-short pulse DRACO petawatt laser. The performance of a cylindrical hydrogen jet can be substantially optimized by a flexible all-optical tailoring of the target profile. Guided by real-time multi-color probing, the target density, the decisive parameter of the interaction, was scanned over two orders of magnitude allowing the exploration of different advanced acceleration regimes in a controlled manner. This approach led to the experimental realization of proton beams with energies up to 80 MeV and application relevant high particle yield from advanced acceleration mechanisms occurring in near-critical density plasmas, a regime so far mostly investigated in numerical studies. Besides cylindrical jets, the formation of thin hydrogen sheets was studied to gain insight into the fluid and crystallization dynamics that can be used to tailor the target shape for laser-proton acceleration. Using these jets, the onset of target transparency was explored, a regime that promises increased proton energies when optimized. Furthermore, after irradiation of the hydrogen jet with a high-intensity laser pulse, an unexpected axial modulation in the plasma density distribution was observed that can play a role in structuring the proton beam profile. This modulation is caused by instabilities that originate from the laser-plasma interaction, for example due to laser-driven return currents or the plasma expansion dynamics

    785

    full texts

    800

    metadata records
    Updated in last 30 days.
    Qucosa – Hemholtz-Zentrum Dresden-Rossendorf is based in Germany
    Access Repository Dashboard
    Do you manage Open Research Online? Become a CORE Member to access insider analytics, issue reports and manage access to outputs from your repository in the CORE Repository Dashboard! 👇