National Chung Hsing University

National Chung Hsing University Institutional Repository
Not a member yet
    82042 research outputs found

    Sinensetin induces apoptosis and autophagy in the treatment of human T-cell lymphoma

    No full text
    The present study was carried out to explore the effect of sinensetin in human T-cell lymphoma Jurkat cells and to reveal the underlying molecular mechanisms. We found that sinensetin significantly impeded Jurkat cell proliferation in a dose-dependent and time-dependent manner. Additionally, sinensetin treatment triggered apoptosis and autophagy in Jurkat cells. The apoptosis induction was related to a loss of mitochondrial membrane potential and to increased caspase-3/-8/-9 and poly(ADP-ribose) polymerase (PARP) cleavage. Sinensetin also induced autophagy, as evidenced by the formation of acidic vacuoles, the upregulation of LC3-II and beclin-1, and the downregulation of p62. In addition, the inhibition of autophagy by 3-methyladenine significantly enhanced the apoptosis rate and improved the sensitivity of the Jurkat cells to sinensetin. Moreover, sinensetin induced cell death, apoptosis, and autophagy through the activation of the reactive oxygen species/ c-Jun N-terminal kinase signaling pathway and the inhibition of the Akt/mTOR signaling pathways. In summary, our results revealed that sinensetin induced apoptosis and autophagy in human T-cell lymphoma Jurkat cells by activating reactive oxygen species/ c-Jun N-terminal kinase and blocking the Akt/mTOR signaling pathways. Thus, sinensetin might be a potential candidate in the development of antitumor drugs targeting T-cell leukemia

    The p38-like MAP kinase modulated H2O2 accumulation in wounding signaling pathways of sweet potato

    No full text
    In sweet potato (Ipomoea batatas cv Tainung 57), MAPK cascades are involved in the regulation of Ipomoelin (IPO) expression upon wounding. p38 MAPK plays an important role in plant’s responses to various environmental stresses. However, the role of p38-like MAPK in wounding response is still unknown. In this study, the levels of phosphorylated-p38-like MAPK (pp38-like MAPK) in sweet potato were noticeably reduced after wounding. In addition, SB203580 (SB), a specific inhibitor blocking p38 MAPK phosphorylation, considerably decreased the accumulation of pp38-like MAPK. Expression of a wound-inducible gene IPO was elevated by SB. Moreover, it stimulated hydrogen peroxide (H2O2) production rather than cytosolic Ca2+ elevation in sweet potato leaves. However, NADPH oxidase (NOX) inhibitor diphenyleneiodonium could not inhibit IPO induction stimulated by SB. These results indicated a p38-like MAPK mechanism was involved in the regulation of IPO expression through NOX-independent H2O2 generation. In addition, the presence of the protein phosphatase inhibitor okadaic acid or the MEK1/ERK inhibitor PD98059 repressed the H2O2- or SB-induced IPO expression, demonstrating phosphatase(s) and MEK1/ERK functioning in the downstream of H2O2 and pp38-like MAPK in the signal transduction pathway stimulating IPO. Conclusively, wounding decreased the amount of pp38-like MAPK, stimulated H2O2 production, and then induced IPO expression

    Impact of Cu doping on the structural, morphological and optical activity of V2O5 nanorods for photodiode fabrication and their characteristics

    No full text
    In this paper, we report a wet chemical precipitation method used to synthesize pure and Cu-doped V2O5 nanorods with different doping concentrations (CuxV2O5 where x = 3, 5 or 7 at%), followed by annealing at 600 °C and characterizations using several techniques. Indeed, a growth mechanism explaining the morphological evolution under the experimental conditions is also proposed. The XRD patterns revealed that all of the studied samples consist of a single V2O5 phase and are well crystallized with a preferential orientation towards the (200) direction. The presence of intrinsic defects and internal stresses in the lattice structure of the CuxV2O5 samples has been substantiated by detailed analysis of the XRD. Apart from the doping level, there was an assessment of identical tiny peaks attributed to the formation of a secondary phase of CuO. SEM images confirmed the presence of agglomerated particles on the surface; the coverage increased with Cu doping level. XPS spectral analysis showed that Cu in the V5+ matrix exists mainly in the Cu2+ state on the surface. The appearance of satellite peaks in the Cu 2p spectra, however, provided definitive evidence for the presence of Cu2+ ions in these studied samples as well. Doping-induced PL quenching was observed due to the absorption of energy from defect emission in the V5+ lattice by Cu2+ ions. We have proposed a cost-effective, less complicated but effective way of synthesizing pure and doped samples in colloidal form, deposited by the nebulizer spray technique on p-Si to establish junction diodes with enhanced optoelectronic properties

    Synthesis and Properties of Quinoxaline-Containing Benzoxazines and Polybenzoxazines

    No full text
    The object of this work is to prepare quinoxaline-based benzoxazines and evaluate thermal properties of their thermosets. For this object, 4,4′-(quinoxaline-2,3-diyl)diphenol (QDP)/furfurylamine-based benzoxazine (QDP-fu) and 4,4′,4″,4‴-([6,6′-biquinoxaline]-2,2′,3,3′-tetrayl)tetraphenol (BQTP)/furfurylamine-based benzoxazine (BQTP-fu) were prepared. The structures of QDP-fu and BQTP-fu were successfully confirmed by FTIR and 1H and 13C NMR spectra. We studied the curing behavior of QDP-fu and BQTP-fu and thermal properties of their thermosets. According to DSC thermograms, QDP-fu and BQTP-fu have the attractive onset exothermic temperatures of 181 and 186 °C, respectively. The onset temperature is approximately 45 °C lower than that of a bisphenol A/furfurylamine-based benzoxazines. According to DMA TMA and TGA thermograms, the thermoset of BQTP-fu shows impressive thermal properties, with a Tg value of 418 °C, a coefficient of thermal expansion of 39 ppm/°C, a 5% decomposition temperature of 430 °C, and a char yield of 72%

    A coupled immersed interface and grid based particle method for three-dimensional electrohydrodynamic simulations

    No full text
    In the present work, we propose a coupled immersed interface and grid based particle method to solve two-phase electrohydrodynamic problems in three dimensions. The problem considers a leaky dielectric (weakly conducting) droplet immersed in another leaky dielectric fluid under electric field where the non-homogeneous droplet surface charge effect is taken into account. Due to the mismatch of electrical properties between two fluids, the electric potential satisfying Laplace equation with jump conditions across the droplet surface is coupled with the conservation equation for the surface charge density. Consequently, we first develop a three-dimensional augmented immersed interface method (IIM) which incorporates some known jump conditions naturally along the normal direction and check the desired accuracy. Here, the grid based particle method (GBPM) is used to track the interface by the projection of the neighboring Eulerian grid points so no requirement for stitching of parameterizations nor body fitted moving meshes. Within the leaky dielectric framework, the electric stress can be treated as an interfacial force so that both the surface tension and electric force can be formulated in a unified continuum force in the Navier-Stokes equations. A series of numerical tests have been carefully conducted to illustrate the accuracy and applicability of the present method to simulate droplet electrohydrodynamics. In particular, we investigate the droplet equilibrium dynamics under weak and strong electric fields in detail. It is interesting to find out a chaotic tumbling motion with irregular rotating modes which we believe that is the first numerical verification to the recent experiments

    Universal Primers for Rapid Detection of Six Pospiviroids in Solanaceae Plants Using One-Step Reverse-Transcription PCR and Reverse-Transcription Loop-Mediated Isothermal Amplification

    No full text
    A number of viruses and viroids infect solanaceous plants causing severe yield losses. Several seed-borne viroids are listed as quarantine pathogens in many countries. Among them, columnea latent viroid, pepper chat fruit viroid, potato spindle tuber viroid, tomato apical stunt viroid, tomato chlorotic dwarf viroid, and tomato planta macho viroid are of major concerns. The objective of this study was to design and test universal primers that could be used to detect six viroids in solanaceous plants using one-step reverse transcription PCR (RT-PCR) and reverse transcription loop-mediated isothermal amplification (RT-LAMP). Results revealed that a pair of degenerate primers could be used in a one-step RT-PCR to amplify six pospiviroids from Solanaceae seeds and plants. Moreover, five primers were designed and used in RT-LAMP to amplify six pospiviroids. The minimal concentration of viroid RNA required for a successful detection varied, ranging from 1 fg to 10 ng, depending on the species of viroid and detection method. In general, RT-LAMP was more sensitive than RT-PCR, but both assays were rapid and highly sensitive tools to detect six pospiviroids. Detection methods in use for these viroids require at least two different sets of primers. The assays developed in this research could facilitate the ability to screen a large number of solanaceous plants and seeds intended for import and export

    Honey proteomic signatures for the identification of honey adulterated with syrup, producing country, and nectar source using SWATH-MS approach

    No full text
    Honey is widely consumed by humans, due to its multiple applications as a food constituent and its therapeutic effects. This study reports on the discrimination of honey products from different geographical and botanical sources, as well as honey products containing distinct forms of syrup used in honey adulteration. Sequential window acquisition of all theoretical fragment ion spectra mass spectrometry (SWATH-MS)-based proteomic analysis combined with chemometrics was successfully applied in identifying characteristic proteins that can be used as biomarkers of the original source of honey. Honey samples from different producing regions (Tainan, Changhua, and Taichung), countries (Taiwan and Thailand), and distinct botanical sources (longan and litchi) were clearly distinguished by the developed orthogonal projections to latent structures discriminant analysis (OPLS-DA) model with good fitness and prediction ability. Furthermore, we successfully discriminated the adulteration of honey with syrup in different proportions (even with honey content as low as 20%) with this proteomic SWATH-MS platform

    Assessment of the intramolecular magnetic interactions in the highly saddled iron(iii) porphyrin pi-radical cations: the change from planar to saddle conformations

    No full text
    The intramolecular magnetic interactions in one-electron oxidized iron(III) porphyrin π-radical cations, [Fe(OETPP˙)Cl][SbCl6] (1), [Fe(OMTPP˙)Cl][SbCl6] (2) and [Fe(TPP˙)Cl][SbCl6] (3), have been compared by means of X-ray crystallography, SQUID magnetometry, cyclic voltammetry, UV-Vis spectroelectrochemical analysis, NMR spectroscopy analysis and unrestricted DFT calculations. Unlike a generally recognized antiferromagnetic coupling dxy↑dxz↑dyz↑dz2↑dx2−y2↑P˙+(a2u)↓ (S = 2) state via a weak bonding interaction as in (3), we have disclosed that a strong bonding interaction among iron dx2−y2 and porphyrin a2u orbitals forms in (1) into a highly delocalized Ψπ = [P˙+(a2u) + FeIII(dx2−y2, dz2)] orbital that is able to accommodate two spin-paired electrons to form the Ψπ2dxy1dxz1dyz1, dz21 (S = 2) ground state. Concurrently, the spin polarization effect is exerted on the paired spins in the Ψπ orbital by magnetic induction from the remaining unpaired electrons in the iron d orbitals. The interpretation mentioned above is further verified by the diamagnetic nature of the saddled copper(II) porphyrin π-cation radical, CuII(OETPP˙)(ClO4) (S = 0), where the strong bonding interaction leads to the Ψπ2dxy2dxz2dyz2dz22 (S = 0) ground state but no spin polarization exists. Thus, the magnetic nature of the iron(III) porphyrin π-radical cation is tuneable by saddling the ring planarity

    Treatment response to low-dose ketamine infusion for treatment-resistant depression: A gene-based genome-wide association study

    No full text
    Backgrounds: Evidence suggested the crucial roles of brain-derived neurotrophic factor (BDNF) and glutamate system functioning in the antidepressant mechanisms of low-dose ketamine infusion in treatment-resistant depression (TRD). Methods: 65 patients with TRD were genotyped for 684,616 single nucleotide polymorphisms (SNPs). Twelve ketamine-related genes were selected for the gene-based genome-wide association study on the antidepressant effect of ketamine infusion and the resulting serum ketamine and norketamine levels. Results: Specific SNPs and whole genes involved in BDNF-TrkB signaling (i.e., rs2049048 in BDNF and rs10217777 in NTRK2) and the glutamatergic and GABAergic systems (i.e., rs16966731 in GRIN2A) were associated with the rapid (within 240 min) and persistent (up to 2 weeks) antidepressant effect of low-dose ketamine infusion and with serum ketamine and norketamine levels. Discussion: Our findings confirmed the predictive roles of BDNF-TrkB signaling and glutamatergic and GABAergic systems in the underlying mechanisms of low-dose ketamine infusion for TRD treatment

    Creation of tiny defects in ZIF-8 by thermal annealing to improve the CO2/N-2 separation of mixed matrix membranes

    No full text
    Thermal-annealed ZIF-8 nanoparticles were added into poly(styrene-co-butadiene) (SBC) to improve the permselectivity of mixed matrix membranes (MMMs). After thermal annealing process, polar atoms were produced by the broken Zn–N bond in the ZIF-8 framework. These polar atoms were beneficial in promoting the affinity toward CO2 and improved the permselectivity of the MMMs. Thermal annealing post-treatment also affected the crystallinity, functional group, and framework structure of ZIF-8. When annealing at mild temperature (300 °C), the tiny defect of ZIF-8 framework developed by removing impurity from ZIF-8 framework and broken Zn-N bond, which is benefit for creating surface area, window pore size, and un-paired –N bond, and thus improving the crystallinity. Compared with the raw-ZIF-8 MMMs, the CO2 permeability and CO2/N2 selectivity of annealed ZIF-8 MMMs enhanced because of the polar atoms produced after annealing process. The MMMs exhibited the best gas permeation performance when the annealed ZIF-8 loading weight was 20 wt%. Compared with the pure SBC membrane, CO2 permeability increased from 13.48 barrer to 39.74 barrer, and CO2/N2 selectivity almost doubled from 11.91 to 22.00

    1,461

    full texts

    82,043

    metadata records
    Updated in last 30 days.
    National Chung Hsing University Institutional Repository is based in Taiwan
    Access Repository Dashboard
    Do you manage Open Research Online? Become a CORE Member to access insider analytics, issue reports and manage access to outputs from your repository in the CORE Repository Dashboard! 👇