299 research outputs found

    Research of Driving Circuit in Coaxial Induction Coilgun

    Get PDF
    Power supply is crucial equipment in coaxial induction coil launcher. Configuration of the driving circuit directly influences the efficiency of the coil launcher.This paper gives a detailed analysis of the properties of the driving circuit construction based on the capacitor source. Three topologies of the driving circuit are compared including oscillation, crowbar and half-wave circuits. It is proved that which circuit has the better efficiency depends on the detailed parameters of the experiment, especially the crowbar resistance. Crowbar resistor regulates not only efficiency of the system, but also temperature rise of the coil. Electromagnetic force (EMF) applied on the armature will be another problem which influences service condition of the driving circuits. Oscillation and crowbar circuits should be applied to both of the synchronous and asynchronous induction coil launchers, respectively. Half-wave circuit is seldom used in the experiment. Although efficiency of the half-wave circuit is very high, the speed of the armature is low. A simple independent half-wave circuit is proposed in this paper. In general, the comprehensive property of crowbar circuit is the most practical in the three typical circuits. Conclusions of the paper could provide guidelines for practice

    Interferon-lambda1 induces peripheral blood mononuclear cell-derived chemokines secretion in patients with systemic lupus erythematosus: its correlation with disease activity

    Get PDF
    Abstract Introduction Systemic lupus erythematosus (SLE) is an autoimmune disease involving multiple organ systems. Previous studies have suggested that interferon-lambda 1 (IFN-λ1), a type III interferon, plays an immunomodulatory role. In this study we investigated its role in SLE, including its correlation with disease activity, organ disorder and production of chemokines. Methods We determined levels of IFN-λ1 mRNA in peripheral blood mononuclear cells (PBMC) and serum protein levels in patients with SLE using real-time polymerase chain reaction (real-time PCR) and enzyme-linked immunoassay (ELISA). Further, we detected the concentration of IFN-inducible protein-10 (IP-10), monokine induced by IFN-γ (MIG) and interleukin-8 (IL-8) secreted by PBMC under the stimulation of IFN-λ1 using ELISA. Results IFN-λ1 mRNA and serum protein levels were higher in patients with SLE compared with healthy controls. Patients with active disease showed higher IFN-λ1 mRNA and serum protein levels compared with those with inactive disease as well. Serum IFN-λ1 levels were positively correlated with Systemic Lupus Erythematosus Disease Activity Index (SLEDAI), anti-dsDNA antibody, C-reactive protein (CRP) and negatively correlated with complement 3. Serum IFN-λ1 levels were higher in SLE patients with renal involvement and arthritis compared with patients without the above-mentioned manifestations. IFN-λ1 with different concentrations displayed different effects on the secretion of the chemokines IP-10, MIG and IL-8. Conclusions These findings indicate that IFN-λ1 is probably involved in the renal disorder and arthritis progression of SLE and associated with disease activity. Moreover, it probably plays an important role in the pathogenesis of SLE by stimulating secretion of the chemokines IP-10, MIG and IL-8. Thus, IFN-λ1 may provide a novel research target for the pathogenesis and therapy of SLE

    Dosage effects of BDNF Val66Met polymorphism on cortical surface area and functional connectivity

    Get PDF
    The single nucleotide polymorphism (SNP) that leads to a valine-to-methionine substitution at codon 66 (Val66Met) in BDNF is correlated with differences in cognitive and memory functions, as well as with several neurological and psychiatric disorders.MRIstudies have already shown that this genetic variant contributes to changes in cortical thickness and volume, but whether the Val66Met polymorphism affects the cortical surface area of healthy subjects remains unclear. Here, we used multimodal MRI to study whether this polymorphism would affect the cortical morphology and resting-state functional connectivity of a large sample of healthy Han Chinese human subjects. An SNP-wise general linear model analysis revealed a "dosage effect" of the Met allele, specifically a stepwise increase in cortical surface area of the right anterior insular cortex with increasing numbers of the Met allele. Moreover, we found enhanced functional connectivity between the anterior insular and the dorsolateral prefrontal cortices that was linked with the dosage of the Met allele. In conclusion, these data demonstrated a "dosage effect" ofBDNFVal66Met on normal cortical structure and function, suggesting anewpath for exploring the mechanisms underlying the effects of genotype on cognition

    G protein α subunit suppresses sporangium formation through a serine/threonine protein kinase in Phytophthora sojae

    Get PDF
    Eukaryotic heterotrimeric guanine nucleotide-binding proteins consist of α, β, and γ subunits, which act as molecular switches to regulate a number of fundamental cellular processes. In the oomycete pathogen Phytophthora sojae, the sole G protein α subunit (Gα; encoded by PsGPA1) has been found to be involved in zoospore mobility and virulence, but how it functions remains unclear. In this study, we show that the Gα subunit PsGPA1 directly interacts with PsYPK1, a serine/threonine protein kinase that consists of an N-terminal region with unknown function and a C-terminal region with a conserved catalytic kinase domain. We generated knockout and knockout-complemented strains of PsYPK1 and found that deletion of PsYPK1 resulted in a pronounced reduction in the production of sporangia and oospores, in mycelial growth on nutrient poor medium, and in virulence. PsYPK1 exhibits a cytoplasmic-nuclear localization pattern that is essential for sporangium formation and virulence of P. sojae. Interestingly, PsGPA1 overexpression was found to prevent nuclear localization of PsYPK1 by exclusively binding to the N-terminal region of PsYPK1, therefore accounting for its negative role in sporangium formation. Our data demonstrate that PsGPA1 negatively regulates sporangium formation by repressing the nuclear localization of its downstream kinase PsYPK1.</p

    Pathogen manipulation of chloroplast function triggers a light-dependent immune recognition

    Get PDF
    In plants and animals, nucleotide-binding leucine-rich repeat (NLR) proteins are intracellular immune sensors that recognize and eliminate a wide range of invading pathogens. NLR-mediated immunity is known to be modulated by environmental factors. However, how pathogen recognition by NLRs is influenced by environmental factors such as light remains unclear. Here, we show that the agronomically important NLR Rpi-vnt1.1 requires light to confer disease resistance against races of the Irish potato famine pathogen Phytophthora infestans that secrete the effector protein AVRvnt1. The activation of Rpi-vnt1.1 requires a nuclear-encoded chloroplast protein, glycerate 3-kinase (GLYK), implicated in energy production. The pathogen effector AVRvnt1 binds the full-length chloroplast-targeted GLYK isoform leading to activation of Rpi-vnt1.1. In the dark, Rpi-vnt1.1-mediated resistance is compromised because plants produce a shorter GLYK-lacking the intact chloroplast transit peptide-that is not bound by AVRvnt1. The transition between full-length and shorter plant GLYK transcripts is controlled by a light-dependent alternative promoter selection mechanism. In plants that lack Rpi-vnt1.1, the presence of AVRvnt1 reduces GLYK accumulation in chloroplasts counteracting GLYK contribution to basal immunity. Our findings revealed that pathogen manipulation of chloroplast functions has resulted in a light-dependent immune response

    The bZIP Transcription Factor MoAP1 Mediates the Oxidative Stress Response and Is Critical for Pathogenicity of the Rice Blast Fungus Magnaporthe oryzae

    Get PDF
    Saccharomyces cerevisiae Yap1 protein is an AP1-like transcription factor involved in the regulation of the oxidative stress response. An ortholog of Yap1, MoAP1, was recently identified from the rice blast fungus Magnaporthe oryzae genome. We found that MoAP1 is highly expressed in conidia and during invasive hyphal growth. The Moap1 mutant was sensitive to H2O2, similar to S. cerevisiae yap1 mutants, and MoAP1 complemented Yap1 function in resistance to H2O2, albeit partially. The Moap1 mutant also exhibited various defects in aerial hyphal growth, mycelial branching, conidia formation, the production of extracellular peroxidases and laccases, and melanin pigmentation. Consequently, the Moap1 mutant was unable to infect the host plant. The MoAP1-eGFP fusion protein is localized inside the nucleus upon exposure to H2O2, suggesting that MoAP1 also functions as a redox sensor. Moreover, through RNA sequence analysis, many MoAP1-regulated genes were identified, including several novel ones that were also involved in pathogenicity. Disruption of respective MGG_01662 (MoAAT) and MGG_02531 (encoding hypothetical protein) genes did not result in any detectable changes in conidial germination and appressorium formation but reduced pathogenicity, whereas the mutant strains of MGG_01230 (MoSSADH) and MGG_15157 (MoACT) showed marketed reductions in aerial hyphal growth, mycelial branching, and loss of conidiation as well as pathogenicity, similar to the Moap1 mutant. Taken together, our studies identify MoAP1 as a positive transcription factor that regulates transcriptions of MGG_01662, MGG_02531, MGG_01230, and MGG_15157 that are important in the growth, development, and pathogenicity of M. oryzae

    Association of brain morphology and phenotypic profile in patients with unruptured intracranial aneurysm

    Get PDF
    IntroductionStudies have found a varying degree of cognitive, psychosocial, and functional impairments in patients with unruptured intracranial aneurysms (UIAs), whereas the neural correlates underlying these impairments remain unknown.MethodsTo examine the brain morphological alterations and white matter lesions in patients with UIA, we performed a range of structural analyses to examine the brain morphological alterations in patients with UIA compared with healthy controls (HCs). Twenty-one patients with UIA and 23 HCs were prospectively enrolled into this study. Study assessment consisted of a brain magnetic resonance imaging (MRI) scan with high-resolution T1-weighted and T2-weighted imaging data, a Montreal Cognitive Assessment (MoCA), and laboratory tests including blood inflammatory markers and serum lipids. Brain MRI data were processed for cortical thickness, local gyrification index (LGI), volume and shape of subcortical nuclei, and white matter lesions.ResultsCompared to the HCs, patients with UIA showed no significant differences in cortical thickness but decreased LGI values in the right posterior cingulate cortex, retrosplenial cortex, cuneus, and lingual gyrus. In addition, decreased LGI values correlated with decreased MoCA score (r = 0.498, p = 0.021) and increased white matter lesion scores (r = −0.497, p = 0.022). The LGI values were correlated with laboratory values such as inflammatory markers and serum lipids. Patients with UIA also showed significant regional atrophy in bilateral thalami as compared to the HCs. Moreover, the LGI values were significantly correlated with thalamic volume in the HCs (r = 0.4728, p = 0.0227) but not in the patients with UIA (r = 0.11, p = 0.6350).DiscussionThe decreased cortical gyrification, increased white matter lesions, and regional thalamic atrophy in patients with UIA might be potential neural correlates of cognitive changes in UIA
    corecore